/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tests/TestUtils.h" #include "include/encode/SkPngEncoder.h" #include "include/utils/SkBase64.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkUtils.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrDrawingManager.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrSurfaceContext.h" #include "src/gpu/GrSurfaceProxy.h" #include "src/gpu/GrTextureProxy.h" #include "src/gpu/SkGr.h" void TestReadPixels(skiatest::Reporter* reporter, GrDirectContext* dContext, GrSurfaceContext* srcContext, uint32_t expectedPixelValues[], const char* testName) { int pixelCnt = srcContext->width() * srcContext->height(); SkImageInfo ii = SkImageInfo::Make(srcContext->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkAutoPixmapStorage pm; pm.alloc(ii); pm.erase(SK_ColorTRANSPARENT); bool read = srcContext->readPixels(dContext, pm, {0, 0}); if (!read) { ERRORF(reporter, "%s: Error reading from texture.", testName); } for (int i = 0; i < pixelCnt; ++i) { if (pm.addr32()[i] != expectedPixelValues[i]) { ERRORF(reporter, "%s: Error, pixel value %d should be 0x%08x, got 0x%08x.", testName, i, expectedPixelValues[i], pm.addr32()[i]); break; } } } void TestWritePixels(skiatest::Reporter* reporter, GrDirectContext* dContext, GrSurfaceContext* dstContext, bool expectedToWork, const char* testName) { SkImageInfo ii = SkImageInfo::Make(dstContext->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkAutoPixmapStorage pm; pm.alloc(ii); for (int y = 0; y < dstContext->height(); ++y) { for (int x = 0; x < dstContext->width(); ++x) { *pm.writable_addr32(x, y) = SkColorToPremulGrColor(SkColorSetARGB(2*y, x, y, x + y)); } } bool write = dstContext->writePixels(dContext, pm, {0, 0}); if (!write) { if (expectedToWork) { ERRORF(reporter, "%s: Error writing to texture.", testName); } return; } if (write && !expectedToWork) { ERRORF(reporter, "%s: writePixels succeeded when it wasn't supposed to.", testName); return; } TestReadPixels(reporter, dContext, dstContext, pm.writable_addr32(0, 0), testName); } void TestCopyFromSurface(skiatest::Reporter* reporter, GrDirectContext* dContext, sk_sp proxy, GrSurfaceOrigin origin, GrColorType colorType, uint32_t expectedPixelValues[], const char* testName) { auto copy = GrSurfaceProxy::Copy(dContext, std::move(proxy), origin, GrMipmapped::kNo, SkBackingFit::kExact, SkBudgeted::kYes); SkASSERT(copy && copy->asTextureProxy()); auto swizzle = dContext->priv().caps()->getReadSwizzle(copy->backendFormat(), colorType); GrSurfaceProxyView view(std::move(copy), origin, swizzle); auto dstContext = GrSurfaceContext::Make(dContext, std::move(view), {colorType, kPremul_SkAlphaType, nullptr}); SkASSERT(dstContext); TestReadPixels(reporter, dContext, dstContext.get(), expectedPixelValues, testName); } bool BipmapToBase64DataURI(const SkBitmap& bitmap, SkString* dst) { SkPixmap pm; if (!bitmap.peekPixels(&pm)) { dst->set("peekPixels failed"); return false; } // We're going to embed this PNG in a data URI, so make it as small as possible SkPngEncoder::Options options; options.fFilterFlags = SkPngEncoder::FilterFlag::kAll; options.fZLibLevel = 9; SkDynamicMemoryWStream wStream; if (!SkPngEncoder::Encode(&wStream, pm, options)) { dst->set("SkPngEncoder::Encode failed"); return false; } sk_sp pngData = wStream.detachAsData(); size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr); // The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs. // Infra says these can be pretty big, as long as we're only outputting them on failure. static const size_t kMaxBase64Length = 1024 * 1024; if (len > kMaxBase64Length) { dst->printf("Encoded image too large (%u bytes)", static_cast(len)); return false; } dst->resize(len); SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str()); dst->prepend("data:image/png;base64,"); return true; } using AccessPixelFn = const float*(const char* floatBuffer, int x, int y); bool compare_pixels(int width, int height, const char* floatA, std::function& atA, const char* floatB, std::function& atB, const float tolRGBA[4], std::function& error) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const float* rgbaA = atA(floatA, x, y); const float* rgbaB = atB(floatB, x, y); float diffs[4]; bool bad = false; for (int i = 0; i < 4; ++i) { diffs[i] = rgbaB[i] - rgbaA[i]; if (std::abs(diffs[i]) > std::abs(tolRGBA[i])) { bad = true; } } if (bad) { error(x, y, diffs); return false; } } } return true; } bool ComparePixels(const GrImageInfo& infoA, const char* a, size_t rowBytesA, const GrImageInfo& infoB, const char* b, size_t rowBytesB, const float tolRGBA[4], std::function& error) { if (infoA.width() != infoB.width() || infoA.height() != infoB.height()) { static constexpr float kDummyDiffs[4] = {}; error(-1, -1, kDummyDiffs); return false; } SkAlphaType floatAlphaType = infoA.alphaType(); // If one is premul and the other is unpremul we do the comparison in premul space. if ((infoA.alphaType() == kPremul_SkAlphaType || infoB.alphaType() == kPremul_SkAlphaType) && (infoA.alphaType() == kUnpremul_SkAlphaType || infoB.alphaType() == kUnpremul_SkAlphaType)) { floatAlphaType = kPremul_SkAlphaType; } sk_sp floatCS; if (SkColorSpace::Equals(infoA.colorSpace(), infoB.colorSpace())) { floatCS = infoA.refColorSpace(); } else { floatCS = SkColorSpace::MakeSRGBLinear(); } GrImageInfo floatInfo(GrColorType::kRGBA_F32, floatAlphaType, std::move(floatCS), infoA.width(), infoA.height()); size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32); size_t floatRowBytes = floatBpp * infoA.width(); std::unique_ptr floatA(new char[floatRowBytes * infoA.height()]); std::unique_ptr floatB(new char[floatRowBytes * infoA.height()]); SkAssertResult(GrConvertPixels(floatInfo, floatA.get(), floatRowBytes, infoA, a, rowBytesA)); SkAssertResult(GrConvertPixels(floatInfo, floatB.get(), floatRowBytes, infoB, b, rowBytesB)); auto at = std::function( [floatBpp, floatRowBytes](const char* floatBuffer, int x, int y) { return reinterpret_cast(floatBuffer + y * floatRowBytes + x * floatBpp); }); return compare_pixels(infoA.width(), infoA.height(), floatA.get(), at, floatB.get(), at, tolRGBA, error); } bool ComparePixels(const SkPixmap& a, const SkPixmap& b, const float tolRGBA[4], std::function& error) { return ComparePixels(a.info(), static_cast(a.addr()), a.rowBytes(), b.info(), static_cast(b.addr()), b.rowBytes(), tolRGBA, error); } bool CheckSolidPixels(const SkColor4f& col, const SkPixmap& pixmap, const float tolRGBA[4], std::function& error) { size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32); std::unique_ptr floatA(new char[floatBpp]); // First convert 'col' to be compatible with 'pixmap' { sk_sp srcCS = SkColorSpace::MakeSRGBLinear(); GrImageInfo srcInfo(GrColorType::kRGBA_F32, kUnpremul_SkAlphaType, std::move(srcCS), 1, 1); GrImageInfo dstInfo(GrColorType::kRGBA_F32, pixmap.alphaType(), pixmap.refColorSpace(), 1, 1); SkAssertResult(GrConvertPixels(dstInfo, floatA.get(), floatBpp, srcInfo, col.vec(), floatBpp)); } size_t floatRowBytes = floatBpp * pixmap.width(); std::unique_ptr floatB(new char[floatRowBytes * pixmap.height()]); // Then convert 'pixmap' to RGBA_F32 { GrImageInfo dstInfo(GrColorType::kRGBA_F32, pixmap.alphaType(), pixmap.refColorSpace(), pixmap.width(), pixmap.height()); SkAssertResult(GrConvertPixels(dstInfo, floatB.get(), floatRowBytes, pixmap.info(), pixmap.addr(), pixmap.rowBytes())); } auto atA = std::function( [](const char* floatBuffer, int /* x */, int /* y */) { return reinterpret_cast(floatBuffer); }); auto atB = std::function( [floatBpp, floatRowBytes](const char* floatBuffer, int x, int y) { return reinterpret_cast(floatBuffer + y * floatRowBytes + x * floatBpp); }); return compare_pixels(pixmap.width(), pixmap.height(), floatA.get(), atA, floatB.get(), atB, tolRGBA, error); } void CheckSingleThreadedProxyRefs(skiatest::Reporter* reporter, GrSurfaceProxy* proxy, int32_t expectedProxyRefs, int32_t expectedBackingRefs) { int32_t actualBackingRefs = proxy->testingOnly_getBackingRefCnt(); REPORTER_ASSERT(reporter, proxy->refCntGreaterThan(expectedProxyRefs - 1) && !proxy->refCntGreaterThan(expectedProxyRefs)); REPORTER_ASSERT(reporter, actualBackingRefs == expectedBackingRefs); } #include "src/utils/SkCharToGlyphCache.h" static SkGlyphID hash_to_glyph(uint32_t value) { return SkToU16(((value >> 16) ^ value) & 0xFFFF); } namespace { class UnicharGen { SkUnichar fU; const int fStep; public: UnicharGen(int step) : fU(0), fStep(step) {} SkUnichar next() { fU += fStep; return fU; } }; } // namespace DEF_TEST(chartoglyph_cache, reporter) { SkCharToGlyphCache cache; const int step = 3; UnicharGen gen(step); for (int i = 0; i < 500; ++i) { SkUnichar c = gen.next(); SkGlyphID glyph = hash_to_glyph(c); int index = cache.findGlyphIndex(c); if (index >= 0) { index = cache.findGlyphIndex(c); } REPORTER_ASSERT(reporter, index < 0); cache.insertCharAndGlyph(~index, c, glyph); UnicharGen gen2(step); for (int j = 0; j <= i; ++j) { c = gen2.next(); glyph = hash_to_glyph(c); index = cache.findGlyphIndex(c); if ((unsigned)index != glyph) { index = cache.findGlyphIndex(c); } REPORTER_ASSERT(reporter, (unsigned)index == glyph); } } }