/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkAndroidCodec.h" #include "SkBitmap.h" #include "SkCodec.h" #include "SkCodecImageGenerator.h" #include "SkData.h" #include "SkImageDecoder.h" #include "SkMD5.h" #include "SkRandom.h" #include "SkStream.h" #include "SkStreamPriv.h" #include "SkPngChunkReader.h" #include "Test.h" #include "png.h" static SkStreamAsset* resource(const char path[]) { SkString fullPath = GetResourcePath(path); return SkStream::NewFromFile(fullPath.c_str()); } static void md5(const SkBitmap& bm, SkMD5::Digest* digest) { SkAutoLockPixels autoLockPixels(bm); SkASSERT(bm.getPixels()); SkMD5 md5; size_t rowLen = bm.info().bytesPerPixel() * bm.width(); for (int y = 0; y < bm.height(); ++y) { md5.update(static_cast(bm.getAddr(0, y)), rowLen); } md5.finish(*digest); } /** * Compute the digest for bm and compare it to a known good digest. * @param r Reporter to assert that bm's digest matches goodDigest. * @param goodDigest The known good digest to compare to. * @param bm The bitmap to test. */ static void compare_to_good_digest(skiatest::Reporter* r, const SkMD5::Digest& goodDigest, const SkBitmap& bm) { SkMD5::Digest digest; md5(bm, &digest); REPORTER_ASSERT(r, digest == goodDigest); } /** * Test decoding an SkCodec to a particular SkImageInfo. * * Calling getPixels(info) should return expectedResult, and if goodDigest is non nullptr, * the resulting decode should match. */ static void test_info(skiatest::Reporter* r, SkCodec* codec, const SkImageInfo& info, SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) { SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); if (goodDigest) { compare_to_good_digest(r, *goodDigest, bm); } } static void test_android_info(skiatest::Reporter* r, SkAndroidCodec* codec, const SkImageInfo& info, SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) { SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); if (goodDigest) { compare_to_good_digest(r, *goodDigest, bm); } } SkIRect generate_random_subset(SkRandom* rand, int w, int h) { SkIRect rect; do { rect.fLeft = rand->nextRangeU(0, w); rect.fTop = rand->nextRangeU(0, h); rect.fRight = rand->nextRangeU(0, w); rect.fBottom = rand->nextRangeU(0, h); rect.sort(); } while (rect.isEmpty()); return rect; } static void test_codec(skiatest::Reporter* r, SkCodec* codec, SkBitmap& bm, const SkImageInfo& info, const SkISize& size, SkCodec::Result expectedResult, SkMD5::Digest* digest, const SkMD5::Digest* goodDigest) { REPORTER_ASSERT(r, info.dimensions() == size); bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); md5(bm, digest); if (goodDigest) { REPORTER_ASSERT(r, *digest == *goodDigest); } { // Test decoding to 565 SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType); SkCodec::Result expected565 = info.alphaType() == kOpaque_SkAlphaType ? expectedResult : SkCodec::kInvalidConversion; test_info(r, codec, info565, expected565, nullptr); } // Verify that re-decoding gives the same result. It is interesting to check this after // a decode to 565, since choosing to decode to 565 may result in some of the decode // options being modified. These options should return to their defaults on another // decode to kN32, so the new digest should match the old digest. test_info(r, codec, info, expectedResult, digest); { // Check alpha type conversions if (info.alphaType() == kOpaque_SkAlphaType) { test_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); test_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); } else { // Decoding to opaque should fail test_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType), SkCodec::kInvalidConversion, nullptr); SkAlphaType otherAt = info.alphaType(); if (kPremul_SkAlphaType == otherAt) { otherAt = kUnpremul_SkAlphaType; } else { otherAt = kPremul_SkAlphaType; } // The other non-opaque alpha type should always succeed, but not match. test_info(r, codec, info.makeAlphaType(otherAt), expectedResult, nullptr); } } } static void test_android_codec(skiatest::Reporter* r, SkAndroidCodec* codec, SkBitmap& bm, const SkImageInfo& info, const SkISize& size, SkCodec::Result expectedResult, SkMD5::Digest* digest, const SkMD5::Digest* goodDigest) { REPORTER_ASSERT(r, info.dimensions() == size); bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); md5(bm, digest); if (goodDigest) { REPORTER_ASSERT(r, *digest == *goodDigest); } { // Test decoding to 565 SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType); SkCodec::Result expected565 = info.alphaType() == kOpaque_SkAlphaType ? expectedResult : SkCodec::kInvalidConversion; test_android_info(r, codec, info565, expected565, nullptr); } // Verify that re-decoding gives the same result. It is interesting to check this after // a decode to 565, since choosing to decode to 565 may result in some of the decode // options being modified. These options should return to their defaults on another // decode to kN32, so the new digest should match the old digest. test_android_info(r, codec, info, expectedResult, digest); { // Check alpha type conversions if (info.alphaType() == kOpaque_SkAlphaType) { test_android_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); test_android_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); } else { // Decoding to opaque should fail test_android_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType), SkCodec::kInvalidConversion, nullptr); SkAlphaType otherAt = info.alphaType(); if (kPremul_SkAlphaType == otherAt) { otherAt = kUnpremul_SkAlphaType; } else { otherAt = kPremul_SkAlphaType; } // The other non-opaque alpha type should always succeed, but not match. test_android_info(r, codec, info.makeAlphaType(otherAt), expectedResult, nullptr); } } } // FIXME: SkScaledCodec is currently only supported for types used by BRD // https://bug.skia.org/4428 static bool supports_scaled_codec(const char path[]) { static const char* const exts[] = { "jpg", "jpeg", "png", "webp" "JPG", "JPEG", "PNG", "WEBP" }; for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) { if (SkStrEndsWith(path, exts[i])) { return true; } } return false; } static void check(skiatest::Reporter* r, const char path[], SkISize size, bool supportsScanlineDecoding, bool supportsSubsetDecoding, bool supportsIncomplete = true) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(nullptr); bool isIncomplete = supportsIncomplete; if (isIncomplete) { size_t size = stream->getLength(); SkAutoTUnref data((SkData::NewFromStream(stream, 2 * size / 3))); codec.reset(SkCodec::NewFromData(data)); } else { codec.reset(SkCodec::NewFromStream(stream.detach())); } if (!codec) { ERRORF(r, "Unable to decode '%s'", path); return; } // Test full image decodes with SkCodec SkMD5::Digest codecDigest; SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; SkCodec::Result expectedResult = isIncomplete ? SkCodec::kIncompleteInput : SkCodec::kSuccess; test_codec(r, codec, bm, info, size, expectedResult, &codecDigest, nullptr); // Scanline decoding follows. // Need to call startScanlineDecode() first. REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); REPORTER_ASSERT(r, codec->skipScanlines(1) == 0); const SkCodec::Result startResult = codec->startScanlineDecode(info); if (supportsScanlineDecoding) { bm.eraseColor(SK_ColorYELLOW); REPORTER_ASSERT(r, startResult == SkCodec::kSuccess); for (int y = 0; y < info.height(); y++) { const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0); if (!isIncomplete) { REPORTER_ASSERT(r, 1 == lines); } } // verify that scanline decoding gives the same result. if (SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()) { compare_to_good_digest(r, codecDigest, bm); } // Cannot continue to decode scanlines beyond the end REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); // Interrupting a scanline decode with a full decode starts from // scratch REPORTER_ASSERT(r, codec->startScanlineDecode(info) == SkCodec::kSuccess); const int lines = codec->getScanlines(bm.getAddr(0, 0), 1, 0); if (!isIncomplete) { REPORTER_ASSERT(r, lines == 1); } REPORTER_ASSERT(r, codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes()) == expectedResult); REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == 0); REPORTER_ASSERT(r, codec->skipScanlines(1) == 0); // Test partial scanline decodes if (supports_scaled_codec(path) && info.width() >= 3) { SkCodec::Options options; int width = info.width(); int height = info.height(); SkIRect subset = SkIRect::MakeXYWH(2 * (width / 3), 0, width / 3, height); options.fSubset = ⊂ const SkCodec::Result partialStartResult = codec->startScanlineDecode(info, &options, nullptr, nullptr); REPORTER_ASSERT(r, partialStartResult == SkCodec::kSuccess); for (int y = 0; y < height; y++) { const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0); if (!isIncomplete) { REPORTER_ASSERT(r, 1 == lines); } } } } else { REPORTER_ASSERT(r, startResult == SkCodec::kUnimplemented); } // The rest of this function tests decoding subsets, and will decode an arbitrary number of // random subsets. // Do not attempt to decode subsets of an image of only once pixel, since there is no // meaningful subset. if (size.width() * size.height() == 1) { return; } SkRandom rand; SkIRect subset; SkCodec::Options opts; opts.fSubset = ⊂ for (int i = 0; i < 5; i++) { subset = generate_random_subset(&rand, size.width(), size.height()); SkASSERT(!subset.isEmpty()); const bool supported = codec->getValidSubset(&subset); REPORTER_ASSERT(r, supported == supportsSubsetDecoding); SkImageInfo subsetInfo = info.makeWH(subset.width(), subset.height()); SkBitmap bm; bm.allocPixels(subsetInfo); const SkCodec::Result result = codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes(), &opts, nullptr, nullptr); if (supportsSubsetDecoding) { REPORTER_ASSERT(r, result == expectedResult); // Webp is the only codec that supports subsets, and it will have modified the subset // to have even left/top. REPORTER_ASSERT(r, SkIsAlign2(subset.fLeft) && SkIsAlign2(subset.fTop)); } else { // No subsets will work. REPORTER_ASSERT(r, result == SkCodec::kUnimplemented); } } // SkScaledCodec tests if ((supportsScanlineDecoding || supportsSubsetDecoding) && supports_scaled_codec(path)) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(nullptr); if (isIncomplete) { size_t size = stream->getLength(); SkAutoTUnref data((SkData::NewFromStream(stream, 2 * size / 3))); codec.reset(SkAndroidCodec::NewFromData(data)); } else { codec.reset(SkAndroidCodec::NewFromStream(stream.detach())); } if (!codec) { ERRORF(r, "Unable to decode '%s'", path); return; } SkBitmap bm; SkMD5::Digest scaledCodecDigest; test_android_codec(r, codec, bm, info, size, expectedResult, &scaledCodecDigest, &codecDigest); } // Test SkCodecImageGenerator if (!isIncomplete) { SkAutoTDelete stream(resource(path)); SkAutoTUnref fullData(SkData::NewFromStream(stream, stream->getLength())); SkAutoTDelete gen(SkCodecImageGenerator::NewFromEncodedCodec(fullData)); SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); REPORTER_ASSERT(r, gen->getPixels(info, bm.getPixels(), bm.rowBytes())); compare_to_good_digest(r, codecDigest, bm); } // If we've just tested incomplete decodes, let's run the same test again on full decodes. if (isIncomplete) { check(r, path, size, supportsScanlineDecoding, supportsSubsetDecoding, false); } } DEF_TEST(Codec, r) { // WBMP check(r, "mandrill.wbmp", SkISize::Make(512, 512), true, false); // WEBP check(r, "baby_tux.webp", SkISize::Make(386, 395), false, true); check(r, "color_wheel.webp", SkISize::Make(128, 128), false, true); check(r, "yellow_rose.webp", SkISize::Make(400, 301), false, true); // BMP check(r, "randPixels.bmp", SkISize::Make(8, 8), true, false); // ICO // FIXME: We are not ready to test incomplete ICOs // These two tests examine interestingly different behavior: // Decodes an embedded BMP image check(r, "color_wheel.ico", SkISize::Make(128, 128), true, false, false); // Decodes an embedded PNG image check(r, "google_chrome.ico", SkISize::Make(256, 256), true, false, false); // GIF // FIXME: We are not ready to test incomplete GIFs check(r, "box.gif", SkISize::Make(200, 55), true, false, false); check(r, "color_wheel.gif", SkISize::Make(128, 128), true, false, false); // randPixels.gif is too small to test incomplete check(r, "randPixels.gif", SkISize::Make(8, 8), true, false, false); // JPG check(r, "CMYK.jpg", SkISize::Make(642, 516), true, false); check(r, "color_wheel.jpg", SkISize::Make(128, 128), true, false); // grayscale.jpg is too small to test incomplete check(r, "grayscale.jpg", SkISize::Make(128, 128), true, false, false); check(r, "mandrill_512_q075.jpg", SkISize::Make(512, 512), true, false); // randPixels.jpg is too small to test incomplete check(r, "randPixels.jpg", SkISize::Make(8, 8), true, false, false); // PNG check(r, "arrow.png", SkISize::Make(187, 312), true, false, false); check(r, "baby_tux.png", SkISize::Make(240, 246), true, false, false); check(r, "color_wheel.png", SkISize::Make(128, 128), true, false, false); check(r, "half-transparent-white-pixel.png", SkISize::Make(1, 1), true, false, false); check(r, "mandrill_128.png", SkISize::Make(128, 128), true, false, false); check(r, "mandrill_16.png", SkISize::Make(16, 16), true, false, false); check(r, "mandrill_256.png", SkISize::Make(256, 256), true, false, false); check(r, "mandrill_32.png", SkISize::Make(32, 32), true, false, false); check(r, "mandrill_512.png", SkISize::Make(512, 512), true, false, false); check(r, "mandrill_64.png", SkISize::Make(64, 64), true, false, false); check(r, "plane.png", SkISize::Make(250, 126), true, false, false); // FIXME: We are not ready to test incomplete interlaced pngs check(r, "plane_interlaced.png", SkISize::Make(250, 126), true, false, false); check(r, "randPixels.png", SkISize::Make(8, 8), true, false, false); check(r, "yellow_rose.png", SkISize::Make(400, 301), true, false, false); // RAW #if defined(SK_CODEC_DECODES_RAW) check(r, "sample_1mp.dng", SkISize::Make(600, 338), false, false, false); #endif } // Test interlaced PNG in stripes, similar to DM's kStripe_Mode DEF_TEST(Codec_stripes, r) { const char * path = "plane_interlaced.png"; SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); } SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, codec); if (!codec) { return; } switch (codec->getScanlineOrder()) { case SkCodec::kBottomUp_SkScanlineOrder: case SkCodec::kOutOfOrder_SkScanlineOrder: ERRORF(r, "This scanline order will not match the original."); return; default: break; } // Baseline for what the image should look like, using N32. const SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); SkMD5::Digest digest; md5(bm, &digest); // Now decode in stripes const int height = info.height(); const int numStripes = 4; int stripeHeight; int remainingLines; SkTDivMod(height, numStripes, &stripeHeight, &remainingLines); bm.eraseColor(SK_ColorYELLOW); result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); // Odd stripes for (int i = 1; i < numStripes; i += 2) { // Skip the even stripes bool skipResult = codec->skipScanlines(stripeHeight); REPORTER_ASSERT(r, skipResult); int linesDecoded = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight, bm.rowBytes()); REPORTER_ASSERT(r, linesDecoded == stripeHeight); } // Even stripes result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); for (int i = 0; i < numStripes; i += 2) { int linesDecoded = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight, bm.rowBytes()); REPORTER_ASSERT(r, linesDecoded == stripeHeight); // Skip the odd stripes if (i + 1 < numStripes) { bool skipResult = codec->skipScanlines(stripeHeight); REPORTER_ASSERT(r, skipResult); } } // Remainder at the end if (remainingLines > 0) { result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); bool skipResult = codec->skipScanlines(height - remainingLines); REPORTER_ASSERT(r, skipResult); int linesDecoded = codec->getScanlines(bm.getAddr(0, height - remainingLines), remainingLines, bm.rowBytes()); REPORTER_ASSERT(r, linesDecoded == remainingLines); } compare_to_good_digest(r, digest, bm); } static void test_invalid_stream(skiatest::Reporter* r, const void* stream, size_t len) { // Neither of these calls should return a codec. Bots should catch us if we leaked anything. SkCodec* codec = SkCodec::NewFromStream(new SkMemoryStream(stream, len, false)); REPORTER_ASSERT(r, !codec); SkAndroidCodec* androidCodec = SkAndroidCodec::NewFromStream(new SkMemoryStream(stream, len, false)); REPORTER_ASSERT(r, !androidCodec); } // Ensure that SkCodec::NewFromStream handles freeing the passed in SkStream, // even on failure. Test some bad streams. DEF_TEST(Codec_leaks, r) { // No codec should claim this as their format, so this tests SkCodec::NewFromStream. const char nonSupportedStream[] = "hello world"; // The other strings should look like the beginning of a file type, so we'll call some // internal version of NewFromStream, which must also delete the stream on failure. const unsigned char emptyPng[] = { 0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a }; const unsigned char emptyJpeg[] = { 0xFF, 0xD8, 0xFF }; const char emptyWebp[] = "RIFF1234WEBPVP"; const char emptyBmp[] = { 'B', 'M' }; const char emptyIco[] = { '\x00', '\x00', '\x01', '\x00' }; const char emptyGif[] = "GIFVER"; test_invalid_stream(r, nonSupportedStream, sizeof(nonSupportedStream)); test_invalid_stream(r, emptyPng, sizeof(emptyPng)); test_invalid_stream(r, emptyJpeg, sizeof(emptyJpeg)); test_invalid_stream(r, emptyWebp, sizeof(emptyWebp)); test_invalid_stream(r, emptyBmp, sizeof(emptyBmp)); test_invalid_stream(r, emptyIco, sizeof(emptyIco)); test_invalid_stream(r, emptyGif, sizeof(emptyGif)); } DEF_TEST(Codec_null, r) { // Attempting to create an SkCodec or an SkScaledCodec with null should not // crash. SkCodec* codec = SkCodec::NewFromStream(nullptr); REPORTER_ASSERT(r, !codec); SkAndroidCodec* androidCodec = SkAndroidCodec::NewFromStream(nullptr); REPORTER_ASSERT(r, !androidCodec); } static void test_dimensions(skiatest::Reporter* r, const char path[]) { // Create the codec from the resource file SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkAndroidCodec::NewFromStream(stream.detach())); if (!codec) { ERRORF(r, "Unable to create codec '%s'", path); return; } // Check that the decode is successful for a variety of scales for (int sampleSize = 1; sampleSize < 32; sampleSize++) { // Scale the output dimensions SkISize scaledDims = codec->getSampledDimensions(sampleSize); SkImageInfo scaledInfo = codec->getInfo() .makeWH(scaledDims.width(), scaledDims.height()) .makeColorType(kN32_SkColorType); // Set up for the decode size_t rowBytes = scaledDims.width() * sizeof(SkPMColor); size_t totalBytes = scaledInfo.getSafeSize(rowBytes); SkAutoTMalloc pixels(totalBytes); SkAndroidCodec::AndroidOptions options; options.fSampleSize = sampleSize; SkCodec::Result result = codec->getAndroidPixels(scaledInfo, pixels.get(), rowBytes, &options); REPORTER_ASSERT(r, SkCodec::kSuccess == result); } } // Ensure that onGetScaledDimensions returns valid image dimensions to use for decodes DEF_TEST(Codec_Dimensions, r) { // JPG test_dimensions(r, "CMYK.jpg"); test_dimensions(r, "color_wheel.jpg"); test_dimensions(r, "grayscale.jpg"); test_dimensions(r, "mandrill_512_q075.jpg"); test_dimensions(r, "randPixels.jpg"); // Decoding small images with very large scaling factors is a potential // source of bugs and crashes. We disable these tests in Gold because // tiny images are not very useful to look at. // Here we make sure that we do not crash or access illegal memory when // performing scaled decodes on small images. test_dimensions(r, "1x1.png"); test_dimensions(r, "2x2.png"); test_dimensions(r, "3x3.png"); test_dimensions(r, "3x1.png"); test_dimensions(r, "1x1.png"); test_dimensions(r, "16x1.png"); test_dimensions(r, "1x16.png"); test_dimensions(r, "mandrill_16.png"); // RAW test_dimensions(r, "sample_1mp.dng"); } static void test_invalid(skiatest::Reporter* r, const char path[]) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, nullptr == codec); } DEF_TEST(Codec_Empty, r) { // Test images that should not be able to create a codec test_invalid(r, "empty_images/zero-dims.gif"); test_invalid(r, "empty_images/zero-embedded.ico"); test_invalid(r, "empty_images/zero-width.bmp"); test_invalid(r, "empty_images/zero-height.bmp"); test_invalid(r, "empty_images/zero-width.jpg"); test_invalid(r, "empty_images/zero-height.jpg"); test_invalid(r, "empty_images/zero-width.png"); test_invalid(r, "empty_images/zero-height.png"); test_invalid(r, "empty_images/zero-width.wbmp"); test_invalid(r, "empty_images/zero-height.wbmp"); // This image is an ico with an embedded mask-bmp. This is illegal. test_invalid(r, "invalid_images/mask-bmp-ico.ico"); } static void test_invalid_parameters(skiatest::Reporter* r, const char path[]) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete decoder(SkCodec::NewFromStream(stream.detach())); // This should return kSuccess because kIndex8 is supported. SkPMColor colorStorage[256]; int colorCount; SkCodec::Result result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, colorStorage, &colorCount); REPORTER_ASSERT(r, SkCodec::kSuccess == result); // The rest of the test is uninteresting if kIndex8 is not supported if (SkCodec::kSuccess != result) { return; } // This should return kInvalidParameters because, in kIndex_8 mode, we must pass in a valid // colorPtr and a valid colorCountPtr. result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, nullptr, nullptr); REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result); result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType)); REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result); } DEF_TEST(Codec_Params, r) { test_invalid_parameters(r, "index8.png"); test_invalid_parameters(r, "mandrill.wbmp"); } static void codex_test_write_fn(png_structp png_ptr, png_bytep data, png_size_t len) { SkWStream* sk_stream = (SkWStream*)png_get_io_ptr(png_ptr); if (!sk_stream->write(data, len)) { png_error(png_ptr, "sk_write_fn Error!"); } } #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED DEF_TEST(Codec_pngChunkReader, r) { // Create a dummy bitmap. Use unpremul RGBA for libpng. SkBitmap bm; const int w = 1; const int h = 1; const SkImageInfo bmInfo = SkImageInfo::Make(w, h, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType); bm.setInfo(bmInfo); bm.allocPixels(); bm.eraseColor(SK_ColorBLUE); SkMD5::Digest goodDigest; md5(bm, &goodDigest); // Write to a png file. png_structp png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); REPORTER_ASSERT(r, png); if (!png) { return; } png_infop info = png_create_info_struct(png); REPORTER_ASSERT(r, info); if (!info) { png_destroy_write_struct(&png, nullptr); return; } if (setjmp(png_jmpbuf(png))) { ERRORF(r, "failed writing png"); png_destroy_write_struct(&png, &info); return; } SkDynamicMemoryWStream wStream; png_set_write_fn(png, (void*) (&wStream), codex_test_write_fn, nullptr); png_set_IHDR(png, info, (png_uint_32)w, (png_uint_32)h, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); // Create some chunks that match the Android framework's use. static png_unknown_chunk gUnknowns[] = { { "npOl", (png_byte*)"outline", sizeof("outline"), PNG_HAVE_IHDR }, { "npLb", (png_byte*)"layoutBounds", sizeof("layoutBounds"), PNG_HAVE_IHDR }, { "npTc", (png_byte*)"ninePatchData", sizeof("ninePatchData"), PNG_HAVE_IHDR }, }; png_set_keep_unknown_chunks(png, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"npOl\0npLb\0npTc\0", 3); png_set_unknown_chunks(png, info, gUnknowns, SK_ARRAY_COUNT(gUnknowns)); #if PNG_LIBPNG_VER < 10600 /* Deal with unknown chunk location bug in 1.5.x and earlier */ png_set_unknown_chunk_location(png, info, 0, PNG_HAVE_IHDR); png_set_unknown_chunk_location(png, info, 1, PNG_HAVE_IHDR); #endif png_write_info(png, info); for (int j = 0; j < h; j++) { png_bytep row = (png_bytep)(bm.getAddr(0, j)); png_write_rows(png, &row, 1); } png_write_end(png, info); png_destroy_write_struct(&png, &info); class ChunkReader : public SkPngChunkReader { public: ChunkReader(skiatest::Reporter* r) : fReporter(r) { this->reset(); } bool readChunk(const char tag[], const void* data, size_t length) override { for (size_t i = 0; i < SK_ARRAY_COUNT(gUnknowns); ++i) { if (!strcmp(tag, (const char*) gUnknowns[i].name)) { // Tag matches. This should have been the first time we see it. REPORTER_ASSERT(fReporter, !fSeen[i]); fSeen[i] = true; // Data and length should match REPORTER_ASSERT(fReporter, length == gUnknowns[i].size); REPORTER_ASSERT(fReporter, !strcmp((const char*) data, (const char*) gUnknowns[i].data)); return true; } } ERRORF(fReporter, "Saw an unexpected unknown chunk."); return true; } bool allHaveBeenSeen() { bool ret = true; for (auto seen : fSeen) { ret &= seen; } return ret; } void reset() { sk_bzero(fSeen, sizeof(fSeen)); } private: skiatest::Reporter* fReporter; // Unowned bool fSeen[3]; }; ChunkReader chunkReader(r); // Now read the file with SkCodec. SkAutoTUnref data(wStream.copyToData()); SkAutoTDelete codec(SkCodec::NewFromData(data, &chunkReader)); REPORTER_ASSERT(r, codec); if (!codec) { return; } // Now compare to the original. SkBitmap decodedBm; decodedBm.setInfo(codec->getInfo()); decodedBm.allocPixels(); SkCodec::Result result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(), decodedBm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); if (decodedBm.colorType() != bm.colorType()) { SkBitmap tmp; bool success = decodedBm.copyTo(&tmp, bm.colorType()); REPORTER_ASSERT(r, success); if (!success) { return; } tmp.swap(decodedBm); } compare_to_good_digest(r, goodDigest, decodedBm); REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen()); // Decoding again will read the chunks again. chunkReader.reset(); REPORTER_ASSERT(r, !chunkReader.allHaveBeenSeen()); result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(), decodedBm.rowBytes()); REPORTER_ASSERT(r, SkCodec::kSuccess == result); REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen()); } #endif // PNG_READ_UNKNOWN_CHUNKS_SUPPORTED // Stream that can only peek up to a limit class LimitedPeekingMemStream : public SkStream { public: LimitedPeekingMemStream(SkData* data, size_t limit) : fStream(data) , fLimit(limit) {} size_t peek(void* buf, size_t bytes) const override { return fStream.peek(buf, SkTMin(bytes, fLimit)); } size_t read(void* buf, size_t bytes) override { return fStream.read(buf, bytes); } bool rewind() override { return fStream.rewind(); } bool isAtEnd() const override { return false; } private: SkMemoryStream fStream; const size_t fLimit; }; // Test that even if webp_parse_header fails to peek enough, it will fall back to read() // + rewind() and succeed. DEF_TEST(Codec_webp_peek, r) { const char* path = "baby_tux.webp"; SkString fullPath(GetResourcePath(path)); SkAutoTUnref data(SkData::NewFromFileName(fullPath.c_str())); if (!data) { SkDebugf("Missing resource '%s'\n", path); return; } // The limit is less than webp needs to peek or read. SkAutoTDelete codec(SkCodec::NewFromStream(new LimitedPeekingMemStream(data, 25))); REPORTER_ASSERT(r, codec); test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr); // Similarly, a stream which does not peek should still succeed. codec.reset(SkCodec::NewFromStream(new LimitedPeekingMemStream(data, 0))); REPORTER_ASSERT(r, codec); test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr); } // SkCodec's wbmp decoder was initially more restrictive than SkImageDecoder. // It required the second byte to be zero. But SkImageDecoder allowed a couple // of bits to be 1 (so long as they do not overlap with 0x9F). Test that // SkCodec now supports an image with these bits set. DEF_TEST(Codec_wbmp, r) { const char* path = "mandrill.wbmp"; SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } // Modify the stream to contain a second byte with some bits set. SkAutoTUnref data(SkCopyStreamToData(stream)); uint8_t* writeableData = static_cast(data->writable_data()); writeableData[1] = static_cast(~0x9F); // SkImageDecoder supports this. SkBitmap bitmap; REPORTER_ASSERT(r, SkImageDecoder::DecodeMemory(data->data(), data->size(), &bitmap)); // So SkCodec should, too. SkAutoTDelete codec(SkCodec::NewFromData(data)); REPORTER_ASSERT(r, codec); if (!codec) { return; } test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr); } // wbmp images have a header that can be arbitrarily large, depending on the // size of the image. We cap the size at 65535, meaning we only need to look at // 8 bytes to determine whether we can read the image. This is important // because SkCodec only passes 14 bytes to SkWbmpCodec to determine whether the // image is a wbmp. DEF_TEST(Codec_wbmp_max_size, r) { const unsigned char maxSizeWbmp[] = { 0x00, 0x00, // Header 0x83, 0xFF, 0x7F, // W: 65535 0x83, 0xFF, 0x7F }; // H: 65535 SkAutoTDelete stream(new SkMemoryStream(maxSizeWbmp, sizeof(maxSizeWbmp), false)); SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, codec); if (!codec) return; REPORTER_ASSERT(r, codec->getInfo().width() == 65535); REPORTER_ASSERT(r, codec->getInfo().height() == 65535); // Now test an image which is too big. Any image with a larger header (i.e. // has bigger width/height) is also too big. const unsigned char tooBigWbmp[] = { 0x00, 0x00, // Header 0x84, 0x80, 0x00, // W: 65536 0x84, 0x80, 0x00 }; // H: 65536 stream.reset(new SkMemoryStream(tooBigWbmp, sizeof(tooBigWbmp), false)); codec.reset(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, !codec); }