/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkMatrix44.h" #include "include/core/SkPoint3.h" #include "include/private/SkM44.h" #include "tests/Test.h" static bool nearly_equal_double(double a, double b) { const double tolerance = 1e-7; double diff = a - b; if (diff < 0) diff = -diff; return diff <= tolerance; } static bool nearly_equal_scalar(SkScalar a, SkScalar b) { const SkScalar tolerance = SK_Scalar1 / 200000; return SkScalarAbs(a - b) <= tolerance; } template void assert16(skiatest::Reporter* reporter, const T data[], T m0, T m1, T m2, T m3, T m4, T m5, T m6, T m7, T m8, T m9, T m10, T m11, T m12, T m13, T m14, T m15) { REPORTER_ASSERT(reporter, data[0] == m0); REPORTER_ASSERT(reporter, data[1] == m1); REPORTER_ASSERT(reporter, data[2] == m2); REPORTER_ASSERT(reporter, data[3] == m3); REPORTER_ASSERT(reporter, data[4] == m4); REPORTER_ASSERT(reporter, data[5] == m5); REPORTER_ASSERT(reporter, data[6] == m6); REPORTER_ASSERT(reporter, data[7] == m7); REPORTER_ASSERT(reporter, data[8] == m8); REPORTER_ASSERT(reporter, data[9] == m9); REPORTER_ASSERT(reporter, data[10] == m10); REPORTER_ASSERT(reporter, data[11] == m11); REPORTER_ASSERT(reporter, data[12] == m12); REPORTER_ASSERT(reporter, data[13] == m13); REPORTER_ASSERT(reporter, data[14] == m14); REPORTER_ASSERT(reporter, data[15] == m15); } static bool nearly_equal(const SkMatrix44& a, const SkMatrix44& b) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { if (!SkScalarNearlyEqual(a.get(i, j), b.get(i, j))) { SkDebugf("not equal %g %g\n", a.get(i, j), b.get(i, j)); return false; } } } return true; } static bool is_identity(const SkMatrix44& m) { SkMatrix44 identity(SkMatrix44::kIdentity_Constructor); return nearly_equal(m, identity); } /////////////////////////////////////////////////////////////////////////////// static bool bits_isonly(int value, int mask) { return 0 == (value & ~mask); } static void test_constructor(skiatest::Reporter* reporter) { // Allocate a matrix on the heap SkMatrix44* placeholderMatrix = new SkMatrix44; std::unique_ptr deleteMe(placeholderMatrix); for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { placeholderMatrix->setDouble(row, col, row * col); } } // Use placement-new syntax to trigger the constructor on top of the heap // address we already initialized. This allows us to check that the // constructor did avoid initializing the matrix contents. SkMatrix44* testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kUninitialized_Constructor); REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix); REPORTER_ASSERT(reporter, !testMatrix->isIdentity()); for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { REPORTER_ASSERT(reporter, nearly_equal_double(row * col, testMatrix->getDouble(row, col))); } } // Verify that kIdentity_Constructor really does initialize to an identity matrix. testMatrix = 0; testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kIdentity_Constructor); REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix); REPORTER_ASSERT(reporter, testMatrix->isIdentity()); REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I()); // Verify that that constructing from an SkMatrix initializes everything. SkMatrix44 scaleMatrix; scaleMatrix.setScale(3, 4, 5); REPORTER_ASSERT(reporter, scaleMatrix.isScale()); testMatrix = new(&scaleMatrix) SkMatrix44(SkMatrix::I()); REPORTER_ASSERT(reporter, testMatrix->isIdentity()); REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I()); } static void test_translate(skiatest::Reporter* reporter) { SkMatrix44 mat; SkMatrix44 inverse; mat.setTranslate(0, 0, 0); REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask)); mat.setTranslate(1, 2, 3); REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kTranslate_Mask)); REPORTER_ASSERT(reporter, mat.invert(&inverse)); REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kTranslate_Mask)); SkMatrix44 a,b,c; a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9); b.setTranslate(10, 11, 12); c.setConcat(a, b); mat = a; mat.preTranslate(10, 11, 12); REPORTER_ASSERT(reporter, mat == c); c.setConcat(b, a); mat = a; mat.postTranslate(10, 11, 12); REPORTER_ASSERT(reporter, mat == c); } static void test_scale(skiatest::Reporter* reporter) { SkMatrix44 mat; SkMatrix44 inverse; mat.setScale(1, 1, 1); REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask)); mat.setScale(1, 2, 3); REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kScale_Mask)); REPORTER_ASSERT(reporter, mat.invert(&inverse)); REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kScale_Mask)); SkMatrix44 a,b,c; a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9); b.setScale(10, 11, 12); c.setConcat(a, b); mat = a; mat.preScale(10, 11, 12); REPORTER_ASSERT(reporter, mat == c); c.setConcat(b, a); mat = a; mat.postScale(10, 11, 12); REPORTER_ASSERT(reporter, mat == c); } static void make_i(SkMatrix44* mat) { mat->setIdentity(); } static void make_t(SkMatrix44* mat) { mat->setTranslate(1, 2, 3); } static void make_s(SkMatrix44* mat) { mat->setScale(1, 2, 3); } static void make_st(SkMatrix44* mat) { mat->setScale(1, 2, 3); mat->postTranslate(1, 2, 3); } static void make_a(SkMatrix44* mat) { mat->setRotateDegreesAbout(1, 2, 3, 45); } static void make_p(SkMatrix44* mat) { SkScalar data[] = { 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, }; mat->setRowMajor(data); } typedef void (*Make44Proc)(SkMatrix44*); static const Make44Proc gMakeProcs[] = { make_i, make_t, make_s, make_st, make_a, make_p }; static void test_map2(skiatest::Reporter* reporter, const SkMatrix44& mat) { SkScalar src2[] = { 1, 2 }; SkScalar src4[] = { src2[0], src2[1], 0, 1 }; SkScalar dstA[4], dstB[4]; for (int i = 0; i < 4; ++i) { dstA[i] = SkScalar(123456789); dstB[i] = SkScalar(987654321); } mat.map2(src2, 1, dstA); mat.mapScalars(src4, dstB); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, dstA[i] == dstB[i]); } } static void test_map2(skiatest::Reporter* reporter) { SkMatrix44 mat; for (size_t i = 0; i < SK_ARRAY_COUNT(gMakeProcs); ++i) { gMakeProcs[i](&mat); test_map2(reporter, mat); } } static void test_gettype(skiatest::Reporter* reporter) { SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor); REPORTER_ASSERT(reporter, matrix.isIdentity()); REPORTER_ASSERT(reporter, SkMatrix44::kIdentity_Mask == matrix.getType()); int expectedMask; matrix.set(1, 1, 0); expectedMask = SkMatrix44::kScale_Mask; REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); matrix.set(0, 3, 1); // translate-x expectedMask |= SkMatrix44::kTranslate_Mask; REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); matrix.set(2, 0, 1); expectedMask |= SkMatrix44::kAffine_Mask; REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); matrix.set(3, 2, 1); REPORTER_ASSERT(reporter, matrix.getType() & SkMatrix44::kPerspective_Mask); // ensure that negative zero is treated as zero SkScalar dx = 0; SkScalar dy = 0; SkScalar dz = 0; matrix.setTranslate(-dx, -dy, -dz); REPORTER_ASSERT(reporter, matrix.isIdentity()); matrix.preTranslate(-dx, -dy, -dz); REPORTER_ASSERT(reporter, matrix.isIdentity()); matrix.postTranslate(-dx, -dy, -dz); REPORTER_ASSERT(reporter, matrix.isIdentity()); } static void test_common_angles(skiatest::Reporter* reporter) { SkMatrix44 rot; // Test precision of rotation in common cases int common_angles[] = { 0, 90, -90, 180, -180, 270, -270, 360, -360 }; for (int i = 0; i < 9; ++i) { rot.setRotateDegreesAbout(0, 0, -1, SkIntToScalar(common_angles[i])); SkMatrix rot3x3 = SkMatrix(rot); REPORTER_ASSERT(reporter, rot3x3.rectStaysRect()); } } static void test_concat(skiatest::Reporter* reporter) { int i; SkMatrix44 a,b,c,d; a.setTranslate(10, 10, 10); b.setScale(2, 2, 2); SkScalar src[8] = { 0, 0, 0, 1, 1, 1, 1, 1 }; SkScalar dst[8]; c.setConcat(a, b); d = a; d.preConcat(b); REPORTER_ASSERT(reporter, d == c); c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4); for (i = 0; i < 3; ++i) { REPORTER_ASSERT(reporter, 10 == dst[i]); REPORTER_ASSERT(reporter, 12 == dst[i + 4]); } c.setConcat(b, a); d = a; d.postConcat(b); REPORTER_ASSERT(reporter, d == c); c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4); for (i = 0; i < 3; ++i) { REPORTER_ASSERT(reporter, 20 == dst[i]); REPORTER_ASSERT(reporter, 22 == dst[i + 4]); } } static void test_determinant(skiatest::Reporter* reporter) { SkMatrix44 a(SkMatrix44::kIdentity_Constructor); REPORTER_ASSERT(reporter, nearly_equal_double(1, a.determinant())); a.set(1, 1, 2); REPORTER_ASSERT(reporter, nearly_equal_double(2, a.determinant())); SkMatrix44 b; REPORTER_ASSERT(reporter, a.invert(&b)); REPORTER_ASSERT(reporter, nearly_equal_double(0.5, b.determinant())); SkMatrix44 c = b = a; c.set(0, 1, 4); b.set(1, 0, 4); REPORTER_ASSERT(reporter, nearly_equal_double(a.determinant(), b.determinant())); SkMatrix44 d = a; d.set(0, 0, 8); REPORTER_ASSERT(reporter, nearly_equal_double(16, d.determinant())); SkMatrix44 e = a; e.postConcat(d); REPORTER_ASSERT(reporter, nearly_equal_double(32, e.determinant())); e.set(0, 0, 0); REPORTER_ASSERT(reporter, nearly_equal_double(0, e.determinant())); } static void test_invert(skiatest::Reporter* reporter) { SkMatrix44 inverse; double inverseData[16]; SkMatrix44 identity(SkMatrix44::kIdentity_Constructor); identity.invert(&inverse); inverse.asRowMajord(inverseData); assert16(reporter, inverseData, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); SkMatrix44 translation; translation.setTranslate(2, 3, 4); translation.invert(&inverse); inverse.asRowMajord(inverseData); assert16(reporter, inverseData, 1, 0, 0, -2, 0, 1, 0, -3, 0, 0, 1, -4, 0, 0, 0, 1); SkMatrix44 scale; scale.setScale(2, 4, 8); scale.invert(&inverse); inverse.asRowMajord(inverseData); assert16(reporter, inverseData, 0.5, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 1); SkMatrix44 scaleTranslation; scaleTranslation.setScale(32, 128, 1024); scaleTranslation.preTranslate(2, 3, 4); scaleTranslation.invert(&inverse); inverse.asRowMajord(inverseData); assert16(reporter, inverseData, 0.03125, 0, 0, -2, 0, 0.0078125, 0, -3, 0, 0, 0.0009765625, -4, 0, 0, 0, 1); SkMatrix44 rotation; rotation.setRotateDegreesAbout(0, 0, 1, 90); rotation.invert(&inverse); SkMatrix44 expected; double expectedInverseRotation[16] = {0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}; expected.setRowMajord(expectedInverseRotation); REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); SkMatrix44 affine; affine.setRotateDegreesAbout(0, 0, 1, 90); affine.preScale(10, 20, 100); affine.preTranslate(2, 3, 4); affine.invert(&inverse); double expectedInverseAffine[16] = {0, 0.1, 0, -2, -0.05, 0, 0, -3, 0, 0, 0.01, -4, 0, 0, 0, 1}; expected.setRowMajord(expectedInverseAffine); REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); SkMatrix44 perspective(SkMatrix44::kIdentity_Constructor); perspective.setDouble(3, 2, 1.0); perspective.invert(&inverse); double expectedInversePerspective[16] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 1}; expected.setRowMajord(expectedInversePerspective); REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); SkMatrix44 affineAndPerspective(SkMatrix44::kIdentity_Constructor); affineAndPerspective.setDouble(3, 2, 1.0); affineAndPerspective.preScale(10, 20, 100); affineAndPerspective.preTranslate(2, 3, 4); affineAndPerspective.invert(&inverse); double expectedInverseAffineAndPerspective[16] = {0.1, 0, 2, -2, 0, 0.05, 3, -3, 0, 0, 4.01, -4, 0, 0, -1, 1}; expected.setRowMajord(expectedInverseAffineAndPerspective); REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); SkMatrix44 tinyScale(SkMatrix44::kIdentity_Constructor); tinyScale.setDouble(0, 0, 1e-39); REPORTER_ASSERT(reporter, tinyScale.getType() == SkMatrix44::kScale_Mask); REPORTER_ASSERT(reporter, !tinyScale.invert(nullptr)); REPORTER_ASSERT(reporter, !tinyScale.invert(&inverse)); SkMatrix44 tinyScaleTranslate(SkMatrix44::kIdentity_Constructor); tinyScaleTranslate.setDouble(0, 0, 1e-38); REPORTER_ASSERT(reporter, tinyScaleTranslate.invert(nullptr)); tinyScaleTranslate.setDouble(0, 3, 10); REPORTER_ASSERT( reporter, tinyScaleTranslate.getType() == (SkMatrix44::kScale_Mask | SkMatrix44::kTranslate_Mask)); REPORTER_ASSERT(reporter, !tinyScaleTranslate.invert(nullptr)); REPORTER_ASSERT(reporter, !tinyScaleTranslate.invert(&inverse)); SkMatrix44 tinyScalePerspective(SkMatrix44::kIdentity_Constructor); tinyScalePerspective.setDouble(0, 0, 1e-39); tinyScalePerspective.setDouble(3, 2, -1); REPORTER_ASSERT(reporter, (tinyScalePerspective.getType() & SkMatrix44::kPerspective_Mask) == SkMatrix44::kPerspective_Mask); REPORTER_ASSERT(reporter, !tinyScalePerspective.invert(nullptr)); REPORTER_ASSERT(reporter, !tinyScalePerspective.invert(&inverse)); } static void test_transpose(skiatest::Reporter* reporter) { SkMatrix44 a,b; int i = 0; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { a.setDouble(row, col, i); b.setDouble(col, row, i++); } } a.transpose(); REPORTER_ASSERT(reporter, nearly_equal(a, b)); } static void test_get_set_double(skiatest::Reporter* reporter) { SkMatrix44 a; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { a.setDouble(row, col, 3.141592653589793); REPORTER_ASSERT(reporter, nearly_equal_double(3.141592653589793, a.getDouble(row, col))); a.setDouble(row, col, 0); REPORTER_ASSERT(reporter, nearly_equal_double(0, a.getDouble(row, col))); } } } static void test_set_3x3(skiatest::Reporter* r) { static float vals[9] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, }; SkMatrix44 mat; mat.set3x3RowMajorf(vals); REPORTER_ASSERT(r, 1.0f == mat.getFloat(0, 0)); REPORTER_ASSERT(r, 2.0f == mat.getFloat(0, 1)); REPORTER_ASSERT(r, 3.0f == mat.getFloat(0, 2)); REPORTER_ASSERT(r, 4.0f == mat.getFloat(1, 0)); REPORTER_ASSERT(r, 5.0f == mat.getFloat(1, 1)); REPORTER_ASSERT(r, 6.0f == mat.getFloat(1, 2)); REPORTER_ASSERT(r, 7.0f == mat.getFloat(2, 0)); REPORTER_ASSERT(r, 8.0f == mat.getFloat(2, 1)); REPORTER_ASSERT(r, 9.0f == mat.getFloat(2, 2)); } static void test_set_row_col_major(skiatest::Reporter* reporter) { SkMatrix44 a,b; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { a.setDouble(row, col, row * 4 + col); } } double bufferd[16]; float bufferf[16]; a.asColMajord(bufferd); b.setColMajord(bufferd); REPORTER_ASSERT(reporter, nearly_equal(a, b)); b.setRowMajord(bufferd); b.transpose(); REPORTER_ASSERT(reporter, nearly_equal(a, b)); a.asColMajorf(bufferf); b.setColMajorf(bufferf); REPORTER_ASSERT(reporter, nearly_equal(a, b)); b.setRowMajorf(bufferf); b.transpose(); REPORTER_ASSERT(reporter, nearly_equal(a, b)); } static void test_3x3_conversion(skiatest::Reporter* reporter) { SkScalar values4x4[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; SkScalar values3x3[9] = { 1, 2, 4, 5, 6, 8, 13, 14, 16 }; SkScalar values4x4flattened[16] = { 1, 2, 0, 4, 5, 6, 0, 8, 0, 0, 1, 0, 13, 14, 0, 16 }; SkMatrix44 a44; a44.setRowMajor(values4x4); SkMatrix a33 = SkMatrix(a44); SkMatrix expected33; for (int i = 0; i < 9; i++) expected33[i] = values3x3[i]; REPORTER_ASSERT(reporter, expected33 == a33); SkMatrix44 a44flattened = a33; SkMatrix44 expected44flattened; expected44flattened.setRowMajor(values4x4flattened); REPORTER_ASSERT(reporter, nearly_equal(a44flattened, expected44flattened)); // Test that a point with a Z value of 0 is transformed the same way. SkScalar vec4[4] = { 2, 4, 0, 8 }; SkPoint3 vec3 = { 2, 4, 8 }; SkScalar vec4transformed[4]; SkPoint3 vec3transformed; SkScalar vec4transformed2[4]; a44.mapScalars(vec4, vec4transformed); a33.mapHomogeneousPoints(&vec3transformed, &vec3, 1); a44flattened.mapScalars(vec4, vec4transformed2); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec3transformed.fX)); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec3transformed.fY)); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec3transformed.fZ)); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec4transformed2[0])); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec4transformed2[1])); REPORTER_ASSERT(reporter, !nearly_equal_scalar(vec4transformed[2], vec4transformed2[2])); REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec4transformed2[3])); } static void test_has_perspective(skiatest::Reporter* reporter) { SkMatrix44 transform(SkMatrix44::kIdentity_Constructor); transform.setDouble(3, 2, -0.1); REPORTER_ASSERT(reporter, transform.hasPerspective()); transform.reset(); REPORTER_ASSERT(reporter, !transform.hasPerspective()); transform.setDouble(3, 0, -1.0); REPORTER_ASSERT(reporter, transform.hasPerspective()); transform.reset(); transform.setDouble(3, 1, -1.0); REPORTER_ASSERT(reporter, transform.hasPerspective()); transform.reset(); transform.setDouble(3, 2, -0.3); REPORTER_ASSERT(reporter, transform.hasPerspective()); transform.reset(); transform.setDouble(3, 3, 0.5); REPORTER_ASSERT(reporter, transform.hasPerspective()); transform.reset(); transform.setDouble(3, 3, 0.0); REPORTER_ASSERT(reporter, transform.hasPerspective()); } static bool is_rectilinear (SkVector4& p1, SkVector4& p2, SkVector4& p3, SkVector4& p4) { return (SkScalarNearlyEqual(p1.fData[0], p2.fData[0]) && SkScalarNearlyEqual(p2.fData[1], p3.fData[1]) && SkScalarNearlyEqual(p3.fData[0], p4.fData[0]) && SkScalarNearlyEqual(p4.fData[1], p1.fData[1])) || (SkScalarNearlyEqual(p1.fData[1], p2.fData[1]) && SkScalarNearlyEqual(p2.fData[0], p3.fData[0]) && SkScalarNearlyEqual(p3.fData[1], p4.fData[1]) && SkScalarNearlyEqual(p4.fData[0], p1.fData[0])); } static SkVector4 mul_with_persp_divide(const SkMatrix44& transform, const SkVector4& target) { SkVector4 result = transform * target; if (result.fData[3] != 0.0f && result.fData[3] != SK_Scalar1) { float wInverse = SK_Scalar1 / result.fData[3]; result.set(result.fData[0] * wInverse, result.fData[1] * wInverse, result.fData[2] * wInverse, SK_Scalar1); } return result; } static bool empirically_preserves_2d_axis_alignment(skiatest::Reporter* reporter, const SkMatrix44& transform) { SkVector4 p1(5.0f, 5.0f, 0.0f); SkVector4 p2(10.0f, 5.0f, 0.0f); SkVector4 p3(10.0f, 20.0f, 0.0f); SkVector4 p4(5.0f, 20.0f, 0.0f); REPORTER_ASSERT(reporter, is_rectilinear(p1, p2, p3, p4)); p1 = mul_with_persp_divide(transform, p1); p2 = mul_with_persp_divide(transform, p2); p3 = mul_with_persp_divide(transform, p3); p4 = mul_with_persp_divide(transform, p4); return is_rectilinear(p1, p2, p3, p4); } static void test(bool expected, skiatest::Reporter* reporter, const SkMatrix44& transform) { if (expected) { REPORTER_ASSERT(reporter, empirically_preserves_2d_axis_alignment(reporter, transform)); REPORTER_ASSERT(reporter, transform.preserves2dAxisAlignment()); } else { REPORTER_ASSERT(reporter, !empirically_preserves_2d_axis_alignment(reporter, transform)); REPORTER_ASSERT(reporter, !transform.preserves2dAxisAlignment()); } } static void test_preserves_2d_axis_alignment(skiatest::Reporter* reporter) { SkMatrix44 transform; SkMatrix44 transform2; static const struct TestCase { SkScalar a; // row 1, column 1 SkScalar b; // row 1, column 2 SkScalar c; // row 2, column 1 SkScalar d; // row 2, column 2 bool expected; } test_cases[] = { { 3.f, 0.f, 0.f, 4.f, true }, // basic case { 0.f, 4.f, 3.f, 0.f, true }, // rotate by 90 { 0.f, 0.f, 0.f, 4.f, true }, // degenerate x { 3.f, 0.f, 0.f, 0.f, true }, // degenerate y { 0.f, 0.f, 3.f, 0.f, true }, // degenerate x + rotate by 90 { 0.f, 4.f, 0.f, 0.f, true }, // degenerate y + rotate by 90 { 3.f, 4.f, 0.f, 0.f, false }, { 0.f, 0.f, 3.f, 4.f, false }, { 0.f, 3.f, 0.f, 4.f, false }, { 3.f, 0.f, 4.f, 0.f, false }, { 3.f, 4.f, 5.f, 0.f, false }, { 3.f, 4.f, 0.f, 5.f, false }, { 3.f, 0.f, 4.f, 5.f, false }, { 0.f, 3.f, 4.f, 5.f, false }, { 2.f, 3.f, 4.f, 5.f, false }, }; for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { const TestCase& value = test_cases[i]; transform.setIdentity(); transform.set(0, 0, value.a); transform.set(0, 1, value.b); transform.set(1, 0, value.c); transform.set(1, 1, value.d); test(value.expected, reporter, transform); } // Try the same test cases again, but this time make sure that other matrix // elements (except perspective) have entries, to test that they are ignored. for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { const TestCase& value = test_cases[i]; transform.setIdentity(); transform.set(0, 0, value.a); transform.set(0, 1, value.b); transform.set(1, 0, value.c); transform.set(1, 1, value.d); transform.set(0, 2, 1.f); transform.set(0, 3, 2.f); transform.set(1, 2, 3.f); transform.set(1, 3, 4.f); transform.set(2, 0, 5.f); transform.set(2, 1, 6.f); transform.set(2, 2, 7.f); transform.set(2, 3, 8.f); test(value.expected, reporter, transform); } // Try the same test cases again, but this time add perspective which is // always assumed to not-preserve axis alignment. for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { const TestCase& value = test_cases[i]; transform.setIdentity(); transform.set(0, 0, value.a); transform.set(0, 1, value.b); transform.set(1, 0, value.c); transform.set(1, 1, value.d); transform.set(0, 2, 1.f); transform.set(0, 3, 2.f); transform.set(1, 2, 3.f); transform.set(1, 3, 4.f); transform.set(2, 0, 5.f); transform.set(2, 1, 6.f); transform.set(2, 2, 7.f); transform.set(2, 3, 8.f); transform.set(3, 0, 9.f); transform.set(3, 1, 10.f); transform.set(3, 2, 11.f); transform.set(3, 3, 12.f); test(false, reporter, transform); } // Try a few more practical situations to check precision // Reuse TestCase (a, b, c, d) as (x, y, z, degrees) axis to rotate about. TestCase rotation_tests[] = { { 0.0, 0.0, 1.0, 90.0, true }, { 0.0, 0.0, 1.0, 180.0, true }, { 0.0, 0.0, 1.0, 270.0, true }, { 0.0, 1.0, 0.0, 90.0, true }, { 1.0, 0.0, 0.0, 90.0, true }, { 0.0, 0.0, 1.0, 45.0, false }, // In 3d these next two are non-preserving, but we're testing in 2d after // orthographic projection, where they are. { 0.0, 1.0, 0.0, 45.0, true }, { 1.0, 0.0, 0.0, 45.0, true }, }; for (size_t i = 0; i < sizeof(rotation_tests)/sizeof(TestCase); ++i) { const TestCase& value = rotation_tests[i]; transform.setRotateDegreesAbout(value.a, value.b, value.c, value.d); test(value.expected, reporter, transform); } static const struct DoubleRotationCase { SkScalar x1; SkScalar y1; SkScalar z1; SkScalar degrees1; SkScalar x2; SkScalar y2; SkScalar z2; SkScalar degrees2; bool expected; } double_rotation_tests[] = { { 0.0, 0.0, 1.0, 90.0, 0.0, 1.0, 0.0, 90.0, true }, { 0.0, 0.0, 1.0, 90.0, 1.0, 0.0, 0.0, 90.0, true }, { 0.0, 1.0, 0.0, 90.0, 0.0, 0.0, 1.0, 90.0, true }, }; for (size_t i = 0; i < sizeof(double_rotation_tests)/sizeof(DoubleRotationCase); ++i) { const DoubleRotationCase& value = double_rotation_tests[i]; transform.setRotateDegreesAbout(value.x1, value.y1, value.z1, value.degrees1); transform2.setRotateDegreesAbout(value.x2, value.y2, value.z2, value.degrees2); transform.postConcat(transform2); test(value.expected, reporter, transform); } // Perspective cases. transform.setIdentity(); transform.setDouble(3, 2, -0.1); // Perspective depth 10 transform2.setRotateDegreesAbout(0.0, 1.0, 0.0, 45.0); transform.preConcat(transform2); test(false, reporter, transform); transform.setIdentity(); transform.setDouble(3, 2, -0.1); // Perspective depth 10 transform2.setRotateDegreesAbout(0.0, 0.0, 1.0, 90.0); transform.preConcat(transform2); test(true, reporter, transform); } // just want to exercise the various converters for Scalar static void test_toint(skiatest::Reporter* reporter) { SkMatrix44 mat; mat.setScale(3, 3, 3); SkScalar sum = SkScalarFloorToScalar(mat.get(0, 0)) + SkScalarRoundToScalar(mat.get(1, 0)) + SkScalarCeilToScalar(mat.get(2, 0)); int isum = SkScalarFloorToInt(mat.get(0, 1)) + SkScalarRoundToInt(mat.get(1, 2)) + SkScalarCeilToInt(mat.get(2, 3)); REPORTER_ASSERT(reporter, sum >= 0); REPORTER_ASSERT(reporter, isum >= 0); REPORTER_ASSERT(reporter, static_cast(isum) == SkIntToScalar(isum)); } DEF_TEST(Matrix44, reporter) { SkMatrix44 mat; SkMatrix44 inverse; SkMatrix44 iden1; SkMatrix44 iden2; SkMatrix44 rot; mat.setTranslate(1, 1, 1); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); mat.setScale(2, 2, 2); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); mat.setScale(SK_Scalar1/2, SK_Scalar1/2, SK_Scalar1/2); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); mat.setScale(3, 3, 3); rot.setRotateDegreesAbout(0, 0, -1, 90); mat.postConcat(rot); REPORTER_ASSERT(reporter, mat.invert(nullptr)); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); iden2.setConcat(inverse, mat); REPORTER_ASSERT(reporter, is_identity(iden2)); // test tiny-valued matrix inverse mat.reset(); auto v = 1.0e-12f; mat.setScale(v,v,v); rot.setRotateDegreesAbout(0, 0, -1, 90); mat.postConcat(rot); mat.postTranslate(v,v,v); REPORTER_ASSERT(reporter, mat.invert(nullptr)); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); // test mixed-valued matrix inverse mat.reset(); mat.setScale(1.0e-2f, 3.0f, 1.0e+2f); rot.setRotateDegreesAbout(0, 0, -1, 90); mat.postConcat(rot); mat.postTranslate(1.0e+2f, 3.0f, 1.0e-2f); REPORTER_ASSERT(reporter, mat.invert(nullptr)); mat.invert(&inverse); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); // test degenerate matrix mat.reset(); mat.set3x3(1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0); REPORTER_ASSERT(reporter, !mat.invert(nullptr)); // test rol/col Major getters { mat.setTranslate(2, 3, 4); float dataf[16]; double datad[16]; mat.asColMajorf(dataf); assert16(reporter, dataf, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 3, 4, 1); mat.asColMajord(datad); assert16(reporter, datad, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 3, 4, 1); mat.asRowMajorf(dataf); assert16(reporter, dataf, 1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1); mat.asRowMajord(datad); assert16(reporter, datad, 1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1); } test_concat(reporter); if (false) { // avoid bit rot, suppress warning (working on making this pass) test_common_angles(reporter); } test_constructor(reporter); test_gettype(reporter); test_determinant(reporter); test_invert(reporter); test_transpose(reporter); test_get_set_double(reporter); test_set_row_col_major(reporter); test_set_3x3(reporter); test_translate(reporter); test_scale(reporter); test_map2(reporter); test_3x3_conversion(reporter); test_has_perspective(reporter); test_preserves_2d_axis_alignment(reporter); test_toint(reporter); } static bool eq(const SkMatrix44& a, const SkM44& b, float tol) { float fa[16], fb[16]; a.asColMajorf(fa); b.getColMajor(fb); for (int i = 0; i < 16; ++i) { if (!SkScalarNearlyEqual(fa[i], fb[i], tol)) { return false; } } return true; } static bool eq(const SkM44& a, const SkM44& b, float tol) { float fa[16], fb[16]; a.getColMajor(fa); b.getColMajor(fb); for (int i = 0; i < 16; ++i) { if (!SkScalarNearlyEqual(fa[i], fb[i], tol)) { return false; } } return true; } DEF_TEST(M44, reporter) { SkM44 m, im; SkMatrix44 m44, im44; REPORTER_ASSERT(reporter, eq(m44, m, 0)); REPORTER_ASSERT(reporter, SkM44() == m); REPORTER_ASSERT(reporter, m.invert(&im)); REPORTER_ASSERT(reporter, SkM44() == im); m.setTranslate(3, 4, 2); m44.setTranslate(3, 4, 2); REPORTER_ASSERT(reporter, eq(m44, m, 0)); REPORTER_ASSERT(reporter, SkM44(1, 0, 0, 3, 0, 1, 0, 4, 0, 0, 1, 2, 0, 0, 0, 1) == m); const float f[] = { 1, 0, 0, 2, 3, 1, 2, 5, 0, 5, 3, 0, 0, 1, 0, 2 }; m.setColMajor(f); m44.setColMajorf(f); REPORTER_ASSERT(reporter, eq(m44, m, 0)); { SkM44 t = m.transpose(); REPORTER_ASSERT(reporter, t != m); REPORTER_ASSERT(reporter, t.rc(1,0) == m.rc(0,1)); SkM44 tt = t.transpose(); REPORTER_ASSERT(reporter, tt == m); } m.setRowMajor(f); m44.setRowMajorf(f); REPORTER_ASSERT(reporter, eq(m44, m, 0)); REPORTER_ASSERT(reporter, m.invert(&im)); REPORTER_ASSERT(reporter, m44.invert(&im44)); REPORTER_ASSERT(reporter, eq(im44, im, 0)); m = m * im; // m should be identity now, but our calc is not perfect... REPORTER_ASSERT(reporter, eq(SkM44(), m, 0.0000005f)); REPORTER_ASSERT(reporter, SkM44() != m); } DEF_TEST(M44_v3, reporter) { SkV3 a = {1, 2, 3}, b = {1, 2, 2}; REPORTER_ASSERT(reporter, a.lengthSquared() == 1 + 4 + 9); REPORTER_ASSERT(reporter, b.length() == 3); REPORTER_ASSERT(reporter, a.dot(b) == 1 + 4 + 6); REPORTER_ASSERT(reporter, b.dot(a) == 1 + 4 + 6); REPORTER_ASSERT(reporter, (a.cross(b) == SkV3{-2, 1, 0})); REPORTER_ASSERT(reporter, (b.cross(a) == SkV3{ 2, -1, 0})); SkM44 m = { 2, 0, 0, 3, 0, 1, 0, 5, 0, 0, 3, 1, 0, 0, 0, 1 }; SkV3 c = m * a; REPORTER_ASSERT(reporter, (c == SkV3{2, 2, 9})); SkV4 d = m.map(4, 3, 2, 1); REPORTER_ASSERT(reporter, (d == SkV4{11, 8, 7, 1})); } DEF_TEST(M44_v4, reporter) { SkM44 m( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); SkV4 r0 = m.row(0), r1 = m.row(1), r2 = m.row(2), r3 = m.row(3); REPORTER_ASSERT(reporter, (r0 == SkV4{ 1, 2, 3, 4})); REPORTER_ASSERT(reporter, (r1 == SkV4{ 5, 6, 7, 8})); REPORTER_ASSERT(reporter, (r2 == SkV4{ 9, 10, 11, 12})); REPORTER_ASSERT(reporter, (r3 == SkV4{13, 14, 15, 16})); REPORTER_ASSERT(reporter, SkM44::Rows(r0, r1, r2, r3) == m); SkV4 c0 = m.col(0), c1 = m.col(1), c2 = m.col(2), c3 = m.col(3); REPORTER_ASSERT(reporter, (c0 == SkV4{1, 5, 9, 13})); REPORTER_ASSERT(reporter, (c1 == SkV4{2, 6, 10, 14})); REPORTER_ASSERT(reporter, (c2 == SkV4{3, 7, 11, 15})); REPORTER_ASSERT(reporter, (c3 == SkV4{4, 8, 12, 16})); REPORTER_ASSERT(reporter, SkM44::Cols(c0, c1, c2, c3) == m); // implement matrix * vector using column vectors SkV4 v = {1, 2, 3, 4}; SkV4 v1 = m * v; SkV4 v2 = c0 * v.x + c1 * v.y + c2 * v.z + c3 * v.w; REPORTER_ASSERT(reporter, v1 == v2); REPORTER_ASSERT(reporter, (c0 + r0 == SkV4{c0.x+r0.x, c0.y+r0.y, c0.z+r0.z, c0.w+r0.w})); REPORTER_ASSERT(reporter, (c0 - r0 == SkV4{c0.x-r0.x, c0.y-r0.y, c0.z-r0.z, c0.w-r0.w})); REPORTER_ASSERT(reporter, (c0 * r0 == SkV4{c0.x*r0.x, c0.y*r0.y, c0.z*r0.z, c0.w*r0.w})); } DEF_TEST(M44_rotate, reporter) { const SkV3 x = {1, 0, 0}, y = {0, 1, 0}, z = {0, 0, 1}; // We have radians version of setRotateAbout methods, but even with our best approx // for PI, sin(SK_ScalarPI) != 0, so to make the comparisons in the unittest clear, // I'm using the variants that explicitly take the sin,cos values. struct { SkScalar sinAngle, cosAngle; SkV3 aboutAxis; SkV3 expectedX, expectedY, expectedZ; } recs[] = { { 0, 1, x, x, y, z}, // angle = 0 { 0, 1, y, x, y, z}, // angle = 0 { 0, 1, z, x, y, z}, // angle = 0 { 0,-1, x, x,-y,-z}, // angle = 180 { 0,-1, y, -x, y,-z}, // angle = 180 { 0,-1, z, -x,-y, z}, // angle = 180 // Skia coordinate system is right-handed { 1, 0, x, x, z,-y}, // angle = 90 { 1, 0, y, -z, y, x}, // angle = 90 { 1, 0, z, y,-x, z}, // angle = 90 {-1, 0, x, x,-z, y}, // angle = -90 {-1, 0, y, z, y,-x}, // angle = -90 {-1, 0, z, -y, x, z}, // angle = -90 }; for (const auto& r : recs) { SkM44 m(SkM44::kNaN_Constructor); m.setRotateUnitSinCos(r.aboutAxis, r.sinAngle, r.cosAngle); auto mx = m * x; auto my = m * y; auto mz = m * z; REPORTER_ASSERT(reporter, mx == r.expectedX); REPORTER_ASSERT(reporter, my == r.expectedY); REPORTER_ASSERT(reporter, mz == r.expectedZ); // flipping the axis-of-rotation should flip the results mx = m * -x; my = m * -y; mz = m * -z; REPORTER_ASSERT(reporter, mx == -r.expectedX); REPORTER_ASSERT(reporter, my == -r.expectedY); REPORTER_ASSERT(reporter, mz == -r.expectedZ); } }