/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Viewer.h" #include "BisectSlide.h" #include "GMSlide.h" #include "ImageSlide.h" #include "Resources.h" #include "SampleSlide.h" #include "SKPSlide.h" #include "SlideDir.h" #include "SvgSlide.h" #include "GrContext.h" #include "SkCanvas.h" #include "SkColorSpacePriv.h" #include "SkColorSpaceXformCanvas.h" #include "SkCommonFlags.h" #include "SkCommandLineFlags.h" #include "SkCommonFlagsGpu.h" #include "SkEventTracingPriv.h" #include "SkFontMgrPriv.h" #include "SkGraphics.h" #include "SkImagePriv.h" #include "SkMakeUnique.h" #include "SkOSFile.h" #include "SkOSPath.h" #include "SkPaintFilterCanvas.h" #include "SkPictureRecorder.h" #include "SkScan.h" #include "SkStream.h" #include "SkSurface.h" #include "SkTaskGroup.h" #include "SkTestFontMgr.h" #include "SkThreadedBMPDevice.h" #include "imgui.h" #include "ccpr/GrCoverageCountingPathRenderer.h" #include #include #if defined(SK_ENABLE_SKOTTIE) #include "SkottieSlide.h" #endif using namespace sk_app; static std::map gPathRendererNames; Application* Application::Create(int argc, char** argv, void* platformData) { return new Viewer(argc, argv, platformData); } static DEFINE_string(slide, "", "Start on this sample."); static DEFINE_bool(list, false, "List samples?"); #ifdef SK_VULKAN # define BACKENDS_STR "\"sw\", \"gl\", and \"vk\"" #else # define BACKENDS_STR "\"sw\" and \"gl\"" #endif static DEFINE_string2(backend, b, "sw", "Backend to use. Allowed values are " BACKENDS_STR "."); static DEFINE_int32(msaa, 1, "Number of subpixel samples. 0 for no HW antialiasing."); DEFINE_string(bisect, "", "Path to a .skp or .svg file to bisect."); DECLARE_int32(threads) DEFINE_string2(file, f, "", "Open a single file for viewing."); const char* kBackendTypeStrings[sk_app::Window::kBackendTypeCount] = { "OpenGL", #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) "ANGLE", #endif #ifdef SK_VULKAN "Vulkan", #endif "Raster" }; static sk_app::Window::BackendType get_backend_type(const char* str) { #ifdef SK_VULKAN if (0 == strcmp(str, "vk")) { return sk_app::Window::kVulkan_BackendType; } else #endif #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) if (0 == strcmp(str, "angle")) { return sk_app::Window::kANGLE_BackendType; } else #endif if (0 == strcmp(str, "gl")) { return sk_app::Window::kNativeGL_BackendType; } else if (0 == strcmp(str, "sw")) { return sk_app::Window::kRaster_BackendType; } else { SkDebugf("Unknown backend type, %s, defaulting to sw.", str); return sk_app::Window::kRaster_BackendType; } } static SkColorSpacePrimaries gSrgbPrimaries = { 0.64f, 0.33f, 0.30f, 0.60f, 0.15f, 0.06f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gAdobePrimaries = { 0.64f, 0.33f, 0.21f, 0.71f, 0.15f, 0.06f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gP3Primaries = { 0.680f, 0.320f, 0.265f, 0.690f, 0.150f, 0.060f, 0.3127f, 0.3290f }; static SkColorSpacePrimaries gRec2020Primaries = { 0.708f, 0.292f, 0.170f, 0.797f, 0.131f, 0.046f, 0.3127f, 0.3290f }; struct NamedPrimaries { const char* fName; SkColorSpacePrimaries* fPrimaries; } gNamedPrimaries[] = { { "sRGB", &gSrgbPrimaries }, { "AdobeRGB", &gAdobePrimaries }, { "P3", &gP3Primaries }, { "Rec. 2020", &gRec2020Primaries }, }; static bool primaries_equal(const SkColorSpacePrimaries& a, const SkColorSpacePrimaries& b) { return memcmp(&a, &b, sizeof(SkColorSpacePrimaries)) == 0; } static Window::BackendType backend_type_for_window(Window::BackendType backendType) { // In raster mode, we still use GL for the window. // This lets us render the GUI faster (and correct). return Window::kRaster_BackendType == backendType ? Window::kNativeGL_BackendType : backendType; } const char* kName = "name"; const char* kValue = "value"; const char* kOptions = "options"; const char* kSlideStateName = "Slide"; const char* kBackendStateName = "Backend"; const char* kMSAAStateName = "MSAA"; const char* kPathRendererStateName = "Path renderer"; const char* kSoftkeyStateName = "Softkey"; const char* kSoftkeyHint = "Please select a softkey"; const char* kFpsStateName = "FPS"; const char* kON = "ON"; const char* kOFF = "OFF"; const char* kRefreshStateName = "Refresh"; Viewer::Viewer(int argc, char** argv, void* platformData) : fCurrentSlide(-1) , fRefresh(false) , fSaveToSKP(false) , fShowImGuiDebugWindow(false) , fShowSlidePicker(false) , fShowImGuiTestWindow(false) , fShowZoomWindow(false) , fLastImage(nullptr) , fBackendType(sk_app::Window::kNativeGL_BackendType) , fColorMode(ColorMode::kLegacy) , fColorSpacePrimaries(gSrgbPrimaries) // Our UI can only tweak gamma (currently), so start out gamma-only , fColorSpaceTransferFn(g2Dot2_TransferFn) , fZoomLevel(0.0f) , fRotation(0.0f) , fGestureDevice(GestureDevice::kNone) , fPerspectiveMode(kPerspective_Off) , fTileCnt(0) , fThreadCnt(0) { SkGraphics::Init(); gPathRendererNames[GpuPathRenderers::kAll] = "All Path Renderers"; gPathRendererNames[GpuPathRenderers::kDefault] = "Default Ganesh Behavior (best path renderer, not including CCPR)"; gPathRendererNames[GpuPathRenderers::kStencilAndCover] = "NV_path_rendering"; gPathRendererNames[GpuPathRenderers::kSmall] = "Small paths (cached sdf or alpha masks)"; gPathRendererNames[GpuPathRenderers::kCoverageCounting] = "Coverage counting"; gPathRendererNames[GpuPathRenderers::kTessellating] = "Tessellating"; gPathRendererNames[GpuPathRenderers::kNone] = "Software masks"; SkDebugf("Command line arguments: "); for (int i = 1; i < argc; ++i) { SkDebugf("%s ", argv[i]); } SkDebugf("\n"); SkCommandLineFlags::Parse(argc, argv); #ifdef SK_BUILD_FOR_ANDROID SetResourcePath("/data/local/tmp/resources"); #endif if (!FLAGS_nativeFonts) { gSkFontMgr_DefaultFactory = &sk_tool_utils::MakePortableFontMgr; } initializeEventTracingForTools(); static SkTaskGroup::Enabler kTaskGroupEnabler(FLAGS_threads); fBackendType = get_backend_type(FLAGS_backend[0]); fWindow = Window::CreateNativeWindow(platformData); DisplayParams displayParams; displayParams.fMSAASampleCount = FLAGS_msaa; SetCtxOptionsFromCommonFlags(&displayParams.fGrContextOptions); fWindow->setRequestedDisplayParams(displayParams); // Configure timers fStatsLayer.setActive(false); fAnimateTimer = fStatsLayer.addTimer("Animate", SK_ColorMAGENTA, 0xffff66ff); fPaintTimer = fStatsLayer.addTimer("Paint", SK_ColorGREEN); fFlushTimer = fStatsLayer.addTimer("Flush", SK_ColorRED, 0xffff6666); // register callbacks fCommands.attach(fWindow); fWindow->pushLayer(this); fWindow->pushLayer(&fStatsLayer); fWindow->pushLayer(&fImGuiLayer); // add key-bindings fCommands.addCommand(' ', "GUI", "Toggle Debug GUI", [this]() { this->fShowImGuiDebugWindow = !this->fShowImGuiDebugWindow; fWindow->inval(); }); // Command to jump directly to the slide picker and give it focus fCommands.addCommand('/', "GUI", "Jump to slide picker", [this]() { this->fShowImGuiDebugWindow = true; this->fShowSlidePicker = true; fWindow->inval(); }); // Alias that to Backspace, to match SampleApp fCommands.addCommand(Window::Key::kBack, "Backspace", "GUI", "Jump to slide picker", [this]() { this->fShowImGuiDebugWindow = true; this->fShowSlidePicker = true; fWindow->inval(); }); fCommands.addCommand('g', "GUI", "Toggle GUI Demo", [this]() { this->fShowImGuiTestWindow = !this->fShowImGuiTestWindow; fWindow->inval(); }); fCommands.addCommand('z', "GUI", "Toggle zoom window", [this]() { this->fShowZoomWindow = !this->fShowZoomWindow; fWindow->inval(); }); fCommands.addCommand('s', "Overlays", "Toggle stats display", [this]() { fStatsLayer.setActive(!fStatsLayer.getActive()); fWindow->inval(); }); fCommands.addCommand('0', "Overlays", "Reset stats", [this]() { fStatsLayer.resetMeasurements(); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('c', "Modes", "Cycle color mode", [this]() { switch (fColorMode) { case ColorMode::kLegacy: this->setColorMode(ColorMode::kColorManagedSRGB8888_NonLinearBlending); break; case ColorMode::kColorManagedSRGB8888_NonLinearBlending: this->setColorMode(ColorMode::kColorManagedSRGB8888); break; case ColorMode::kColorManagedSRGB8888: this->setColorMode(ColorMode::kColorManagedLinearF16); break; case ColorMode::kColorManagedLinearF16: this->setColorMode(ColorMode::kLegacy); break; } }); fCommands.addCommand(Window::Key::kRight, "Right", "Navigation", "Next slide", [this]() { this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0); }); fCommands.addCommand(Window::Key::kLeft, "Left", "Navigation", "Previous slide", [this]() { this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1); }); fCommands.addCommand(Window::Key::kUp, "Up", "Transform", "Zoom in", [this]() { this->changeZoomLevel(1.f / 32.f); fWindow->inval(); }); fCommands.addCommand(Window::Key::kDown, "Down", "Transform", "Zoom out", [this]() { this->changeZoomLevel(-1.f / 32.f); fWindow->inval(); }); fCommands.addCommand('d', "Modes", "Change rendering backend", [this]() { sk_app::Window::BackendType newBackend = (sk_app::Window::BackendType)( (fBackendType + 1) % sk_app::Window::kBackendTypeCount); // Switching to and from Vulkan is problematic on Linux so disabled for now #if defined(SK_BUILD_FOR_UNIX) && defined(SK_VULKAN) if (newBackend == sk_app::Window::kVulkan_BackendType) { newBackend = (sk_app::Window::BackendType)((newBackend + 1) % sk_app::Window::kBackendTypeCount); } else if (fBackendType == sk_app::Window::kVulkan_BackendType) { newBackend = sk_app::Window::kVulkan_BackendType; } #endif this->setBackend(newBackend); }); fCommands.addCommand('+', "Threaded Backend", "Increase tile count", [this]() { fTileCnt++; if (fThreadCnt == 0) { this->resetExecutor(); } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('-', "Threaded Backend", "Decrease tile count", [this]() { fTileCnt = SkTMax(0, fTileCnt - 1); if (fThreadCnt == 0) { this->resetExecutor(); } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('>', "Threaded Backend", "Increase thread count", [this]() { if (fTileCnt == 0) { return; } fThreadCnt = (fThreadCnt + 1) % fTileCnt; this->resetExecutor(); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('<', "Threaded Backend", "Decrease thread count", [this]() { if (fTileCnt == 0) { return; } fThreadCnt = (fThreadCnt + fTileCnt - 1) % fTileCnt; this->resetExecutor(); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('K', "IO", "Save slide to SKP", [this]() { fSaveToSKP = true; fWindow->inval(); }); fCommands.addCommand('G', "Modes", "Geometry", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); uint32_t flags = params.fSurfaceProps.flags(); if (!fPixelGeometryOverrides) { fPixelGeometryOverrides = true; params.fSurfaceProps = SkSurfaceProps(flags, kUnknown_SkPixelGeometry); } else { switch (params.fSurfaceProps.pixelGeometry()) { case kUnknown_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kRGB_H_SkPixelGeometry); break; case kRGB_H_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kBGR_H_SkPixelGeometry); break; case kBGR_H_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kRGB_V_SkPixelGeometry); break; case kRGB_V_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, kBGR_V_SkPixelGeometry); break; case kBGR_V_SkPixelGeometry: params.fSurfaceProps = SkSurfaceProps(flags, SkSurfaceProps::kLegacyFontHost_InitType); fPixelGeometryOverrides = false; break; } } fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('H', "Paint", "Hinting mode", [this]() { if (!fPaintOverrides.fHinting) { fPaintOverrides.fHinting = true; fPaint.setHinting(SkPaint::kNo_Hinting); } else { switch (fPaint.getHinting()) { case SkPaint::kNo_Hinting: fPaint.setHinting(SkPaint::kSlight_Hinting); break; case SkPaint::kSlight_Hinting: fPaint.setHinting(SkPaint::kNormal_Hinting); break; case SkPaint::kNormal_Hinting: fPaint.setHinting(SkPaint::kFull_Hinting); break; case SkPaint::kFull_Hinting: fPaint.setHinting(SkPaint::kNo_Hinting); fPaintOverrides.fHinting = false; break; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('A', "Paint", "Antialias Mode", [this]() { if (!(fPaintOverrides.fFlags & SkPaint::kAntiAlias_Flag)) { fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fFlags |= SkPaint::kAntiAlias_Flag; fPaint.setAntiAlias(false); gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = false; } else { fPaint.setAntiAlias(true); switch (fPaintOverrides.fAntiAlias) { case SkPaintFields::AntiAliasState::Alias: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::Normal; gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::Normal: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::AnalyticAAEnabled; gSkUseAnalyticAA = true; gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::AnalyticAAEnabled: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::AnalyticAAForced; gSkUseAnalyticAA = gSkForceAnalyticAA = true; gSkUseDeltaAA = gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::AnalyticAAForced: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::DeltaAAEnabled; gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = true; gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::DeltaAAEnabled: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::DeltaAAForced; gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = true; break; case SkPaintFields::AntiAliasState::DeltaAAForced: fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fFlags &= ~SkPaint::kAntiAlias_Flag; gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA; gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA; gSkUseDeltaAA = fPaintOverrides.fOriginalSkUseDeltaAA; gSkForceDeltaAA = fPaintOverrides.fOriginalSkForceDeltaAA; break; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('D', "Modes", "DFT", [this]() { DisplayParams params = fWindow->getRequestedDisplayParams(); uint32_t flags = params.fSurfaceProps.flags(); flags ^= SkSurfaceProps::kUseDeviceIndependentFonts_Flag; params.fSurfaceProps = SkSurfaceProps(flags, params.fSurfaceProps.pixelGeometry()); fWindow->setRequestedDisplayParams(params); this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('L', "Paint", "Subpixel Antialias Mode", [this]() { if (!(fPaintOverrides.fFlags & SkPaint::kLCDRenderText_Flag)) { fPaintOverrides.fFlags |= SkPaint::kLCDRenderText_Flag; fPaint.setLCDRenderText(false); } else { if (!fPaint.isLCDRenderText()) { fPaint.setLCDRenderText(true); } else { fPaintOverrides.fFlags &= ~SkPaint::kLCDRenderText_Flag; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('S', "Paint", "Subpixel Position Mode", [this]() { if (!(fPaintOverrides.fFlags & SkPaint::kSubpixelText_Flag)) { fPaintOverrides.fFlags |= SkPaint::kSubpixelText_Flag; fPaint.setSubpixelText(false); } else { if (!fPaint.isSubpixelText()) { fPaint.setSubpixelText(true); } else { fPaintOverrides.fFlags &= ~SkPaint::kSubpixelText_Flag; } } this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('p', "Transform", "Toggle Perspective Mode", [this]() { fPerspectiveMode = (kPerspective_Real == fPerspectiveMode) ? kPerspective_Fake : kPerspective_Real; this->updateTitle(); fWindow->inval(); }); fCommands.addCommand('P', "Transform", "Toggle Perspective", [this]() { fPerspectiveMode = (kPerspective_Off == fPerspectiveMode) ? kPerspective_Real : kPerspective_Off; this->updateTitle(); fWindow->inval(); }); // set up slides this->initSlides(); if (FLAGS_list) { this->listNames(); } fPerspectivePoints[0].set(0, 0); fPerspectivePoints[1].set(1, 0); fPerspectivePoints[2].set(0, 1); fPerspectivePoints[3].set(1, 1); fAnimTimer.run(); auto gamutImage = GetResourceAsImage("images/gamut.png"); if (gamutImage) { fImGuiGamutPaint.setShader(gamutImage->makeShader()); } fImGuiGamutPaint.setColor(SK_ColorWHITE); fImGuiGamutPaint.setFilterQuality(kLow_SkFilterQuality); fWindow->attach(backend_type_for_window(fBackendType)); this->setCurrentSlide(this->startupSlide()); } void Viewer::initSlides() { fAllSlideNames = Json::Value(Json::arrayValue); using SlideFactory = sk_sp(*)(const SkString& name, const SkString& path); static const struct { const char* fExtension; const char* fDirName; const SkCommandLineFlags::StringArray& fFlags; const SlideFactory fFactory; } gExternalSlidesInfo[] = { { ".skp", "skp-dir", FLAGS_skps, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, { ".jpg", "jpg-dir", FLAGS_jpgs, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #if defined(SK_ENABLE_SKOTTIE) { ".json", "skottie-dir", FLAGS_jsons, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, #endif { ".svg", "svg-dir", FLAGS_svgs, [](const SkString& name, const SkString& path) -> sk_sp { return sk_make_sp(name, path);} }, }; SkTArray, true> dirSlides; const auto addSlide = [&](const SkString& name, const SkString& path, const SlideFactory& fact) { if (SkCommandLineFlags::ShouldSkip(FLAGS_match, name.c_str())) { return; } if (auto slide = fact(name, path)) { dirSlides.push_back(slide); fSlides.push_back(std::move(slide)); } }; if (!FLAGS_file.isEmpty()) { // single file mode const SkString file(FLAGS_file[0]); if (sk_exists(file.c_str(), kRead_SkFILE_Flag)) { for (const auto& sinfo : gExternalSlidesInfo) { if (file.endsWith(sinfo.fExtension)) { addSlide(SkOSPath::Basename(file.c_str()), file, sinfo.fFactory); return; } } fprintf(stderr, "Unsupported file type \"%s\"\n", file.c_str()); } else { fprintf(stderr, "Cannot read \"%s\"\n", file.c_str()); } return; } // Bisect slide. if (!FLAGS_bisect.isEmpty()) { sk_sp bisect = BisectSlide::Create(FLAGS_bisect[0]); if (bisect && !SkCommandLineFlags::ShouldSkip(FLAGS_match, bisect->getName().c_str())) { if (FLAGS_bisect.count() >= 2) { for (const char* ch = FLAGS_bisect[1]; *ch; ++ch) { bisect->onChar(*ch); } } fSlides.push_back(std::move(bisect)); } } // GMs int firstGM = fSlides.count(); const skiagm::GMRegistry* gms(skiagm::GMRegistry::Head()); while (gms) { std::unique_ptr gm(gms->factory()(nullptr)); if (!SkCommandLineFlags::ShouldSkip(FLAGS_match, gm->getName())) { sk_sp slide(new GMSlide(gm.release())); fSlides.push_back(std::move(slide)); } gms = gms->next(); } // reverse gms int numGMs = fSlides.count() - firstGM; for (int i = 0; i < numGMs/2; ++i) { std::swap(fSlides[firstGM + i], fSlides[fSlides.count() - i - 1]); } // samples const SkViewRegister* reg = SkViewRegister::Head(); while (reg) { sk_sp slide(new SampleSlide(reg->factory())); if (!SkCommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) { fSlides.push_back(slide); } reg = reg->next(); } for (const auto& info : gExternalSlidesInfo) { for (const auto& flag : info.fFlags) { if (SkStrEndsWith(flag.c_str(), info.fExtension)) { // single file addSlide(SkOSPath::Basename(flag.c_str()), flag, info.fFactory); } else { // directory SkOSFile::Iter it(flag.c_str(), info.fExtension); SkString name; while (it.next(&name)) { addSlide(name, SkOSPath::Join(flag.c_str(), name.c_str()), info.fFactory); } } if (!dirSlides.empty()) { fSlides.push_back( sk_make_sp(SkStringPrintf("%s[%s]", info.fDirName, flag.c_str()), std::move(dirSlides))); dirSlides.reset(); } } } } Viewer::~Viewer() { fWindow->detach(); delete fWindow; } struct SkPaintTitleUpdater { SkPaintTitleUpdater(SkString* title) : fTitle(title), fCount(0) {} void append(const char* s) { if (fCount == 0) { fTitle->append(" {"); } else { fTitle->append(", "); } fTitle->append(s); ++fCount; } void done() { if (fCount > 0) { fTitle->append("}"); } } SkString* fTitle; int fCount; }; void Viewer::updateTitle() { if (!fWindow) { return; } if (fWindow->sampleCount() < 1) { return; // Surface hasn't been created yet. } SkString title("Viewer: "); title.append(fSlides[fCurrentSlide]->getName()); if (gSkUseDeltaAA) { if (gSkForceDeltaAA) { title.append(" "); } else { title.append(" "); } } else if (gSkUseAnalyticAA) { if (gSkForceAnalyticAA) { title.append(" "); } else { title.append(" "); } } SkPaintTitleUpdater paintTitle(&title); auto paintFlag = [this, &paintTitle](SkPaint::Flags flag, bool (SkPaint::* isFlag)() const, const char* on, const char* off) { if (fPaintOverrides.fFlags & flag) { paintTitle.append((fPaint.*isFlag)() ? on : off); } }; paintFlag(SkPaint::kAntiAlias_Flag, &SkPaint::isAntiAlias, "Antialias", "Alias"); paintFlag(SkPaint::kDither_Flag, &SkPaint::isDither, "DITHER", "No Dither"); paintFlag(SkPaint::kFakeBoldText_Flag, &SkPaint::isFakeBoldText, "Fake Bold", "No Fake Bold"); paintFlag(SkPaint::kLinearText_Flag, &SkPaint::isLinearText, "Linear Text", "Non-Linear Text"); paintFlag(SkPaint::kSubpixelText_Flag, &SkPaint::isSubpixelText, "Subpixel Text", "Pixel Text"); paintFlag(SkPaint::kLCDRenderText_Flag, &SkPaint::isLCDRenderText, "LCD", "lcd"); paintFlag(SkPaint::kEmbeddedBitmapText_Flag, &SkPaint::isEmbeddedBitmapText, "Bitmap Text", "No Bitmap Text"); paintFlag(SkPaint::kAutoHinting_Flag, &SkPaint::isAutohinted, "Force Autohint", "No Force Autohint"); paintFlag(SkPaint::kVerticalText_Flag, &SkPaint::isVerticalText, "Vertical Text", "No Vertical Text"); if (fPaintOverrides.fHinting) { switch (fPaint.getHinting()) { case SkPaint::kNo_Hinting: paintTitle.append("No Hinting"); break; case SkPaint::kSlight_Hinting: paintTitle.append("Slight Hinting"); break; case SkPaint::kNormal_Hinting: paintTitle.append("Normal Hinting"); break; case SkPaint::kFull_Hinting: paintTitle.append("Full Hinting"); break; } } paintTitle.done(); if (fTileCnt > 0) { title.appendf(" T%d", fTileCnt); if (fThreadCnt > 0) { title.appendf("/%d", fThreadCnt); } } switch (fColorMode) { case ColorMode::kLegacy: title.append(" Legacy 8888"); break; case ColorMode::kColorManagedSRGB8888_NonLinearBlending: title.append(" ColorManaged 8888 (Nonlinear blending)"); break; case ColorMode::kColorManagedSRGB8888: title.append(" ColorManaged 8888"); break; case ColorMode::kColorManagedLinearF16: title.append(" ColorManaged F16"); break; } if (ColorMode::kLegacy != fColorMode) { int curPrimaries = -1; for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) { if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) { curPrimaries = i; break; } } title.appendf(" %s", curPrimaries >= 0 ? gNamedPrimaries[curPrimaries].fName : "Custom"); if (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) { title.appendf(" Gamma %f", fColorSpaceTransferFn.fG); } } const DisplayParams& params = fWindow->getRequestedDisplayParams(); if (fPixelGeometryOverrides) { switch (params.fSurfaceProps.pixelGeometry()) { case kUnknown_SkPixelGeometry: title.append( " Flat"); break; case kRGB_H_SkPixelGeometry: title.append( " RGB"); break; case kBGR_H_SkPixelGeometry: title.append( " BGR"); break; case kRGB_V_SkPixelGeometry: title.append( " RGBV"); break; case kBGR_V_SkPixelGeometry: title.append( " BGRV"); break; } } if (params.fSurfaceProps.isUseDeviceIndependentFonts()) { title.append(" DFT"); } title.append(" ["); title.append(kBackendTypeStrings[fBackendType]); int msaa = fWindow->sampleCount(); if (msaa > 1) { title.appendf(" MSAA: %i", msaa); } title.append("]"); GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers; if (GpuPathRenderers::kDefault != pr) { title.appendf(" [Path renderer: %s]", gPathRendererNames[pr].c_str()); } if (kPerspective_Real == fPerspectiveMode) { title.append(" Perpsective (Real)"); } else if (kPerspective_Fake == fPerspectiveMode) { title.append(" Perspective (Fake)"); } fWindow->setTitle(title.c_str()); } int Viewer::startupSlide() const { if (!FLAGS_slide.isEmpty()) { int count = fSlides.count(); for (int i = 0; i < count; i++) { if (fSlides[i]->getName().equals(FLAGS_slide[0])) { return i; } } fprintf(stderr, "Unknown slide \"%s\"\n", FLAGS_slide[0]); this->listNames(); } return 0; } void Viewer::listNames() const { SkDebugf("All Slides:\n"); for (const auto& slide : fSlides) { SkDebugf(" %s\n", slide->getName().c_str()); } } void Viewer::setCurrentSlide(int slide) { SkASSERT(slide >= 0 && slide < fSlides.count()); if (slide == fCurrentSlide) { return; } if (fCurrentSlide >= 0) { fSlides[fCurrentSlide]->unload(); } fSlides[slide]->load(SkIntToScalar(fWindow->width()), SkIntToScalar(fWindow->height())); fCurrentSlide = slide; this->setupCurrentSlide(); } void Viewer::setupCurrentSlide() { if (fCurrentSlide >= 0) { // prepare dimensions for image slides fGesture.resetTouchState(); fDefaultMatrix.reset(); const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height()); const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height()); // Start with a matrix that scales the slide to the available screen space if (fWindow->scaleContentToFit()) { if (windowRect.width() > 0 && windowRect.height() > 0) { fDefaultMatrix.setRectToRect(slideBounds, windowRect, SkMatrix::kStart_ScaleToFit); } } // Prevent the user from dragging content so far outside the window they can't find it again fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix()); this->updateTitle(); this->updateUIState(); fStatsLayer.resetMeasurements(); fWindow->inval(); } } #define MAX_ZOOM_LEVEL 8 #define MIN_ZOOM_LEVEL -8 void Viewer::changeZoomLevel(float delta) { fZoomLevel += delta; fZoomLevel = SkScalarPin(fZoomLevel, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL); this->preTouchMatrixChanged(); } void Viewer::preTouchMatrixChanged() { // Update the trans limit as the transform changes. const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height()); const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height()); fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix()); } SkMatrix Viewer::computePerspectiveMatrix() { SkScalar w = fWindow->width(), h = fWindow->height(); SkPoint orthoPts[4] = { { 0, 0 }, { w, 0 }, { 0, h }, { w, h } }; SkPoint perspPts[4] = { { fPerspectivePoints[0].fX * w, fPerspectivePoints[0].fY * h }, { fPerspectivePoints[1].fX * w, fPerspectivePoints[1].fY * h }, { fPerspectivePoints[2].fX * w, fPerspectivePoints[2].fY * h }, { fPerspectivePoints[3].fX * w, fPerspectivePoints[3].fY * h } }; SkMatrix m; m.setPolyToPoly(orthoPts, perspPts, 4); return m; } SkMatrix Viewer::computePreTouchMatrix() { SkMatrix m = fDefaultMatrix; SkScalar zoomScale = (fZoomLevel < 0) ? SK_Scalar1 / (SK_Scalar1 - fZoomLevel) : SK_Scalar1 + fZoomLevel; m.preScale(zoomScale, zoomScale); const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions(); m.preRotate(fRotation, slideSize.width() * 0.5f, slideSize.height() * 0.5f); if (kPerspective_Real == fPerspectiveMode) { SkMatrix persp = this->computePerspectiveMatrix(); m.postConcat(persp); } return m; } SkMatrix Viewer::computeMatrix() { SkMatrix m = fGesture.localM(); m.preConcat(fGesture.globalM()); m.preConcat(this->computePreTouchMatrix()); return m; } void Viewer::setBackend(sk_app::Window::BackendType backendType) { fBackendType = backendType; fWindow->detach(); #if defined(SK_BUILD_FOR_WIN) // Switching between OpenGL, Vulkan, and ANGLE in the same window is problematic at this point // on Windows, so we just delete the window and recreate it. DisplayParams params = fWindow->getRequestedDisplayParams(); delete fWindow; fWindow = Window::CreateNativeWindow(nullptr); // re-register callbacks fCommands.attach(fWindow); fWindow->pushLayer(this); fWindow->pushLayer(&fStatsLayer); fWindow->pushLayer(&fImGuiLayer); // Don't allow the window to re-attach. If we're in MSAA mode, the params we grabbed above // will still include our correct sample count. But the re-created fWindow will lose that // information. On Windows, we need to re-create the window when changing sample count, // so we'll incorrectly detect that situation, then re-initialize the window in GL mode, // rendering this tear-down step pointless (and causing the Vulkan window context to fail // as if we had never changed windows at all). fWindow->setRequestedDisplayParams(params, false); #endif fWindow->attach(backend_type_for_window(fBackendType)); } void Viewer::setColorMode(ColorMode colorMode) { fColorMode = colorMode; // When we're in color managed mode, we tag our window surface as sRGB. If we've switched into // or out of legacy/nonlinear mode, we need to update our window configuration. DisplayParams params = fWindow->getRequestedDisplayParams(); bool wasInLegacy = !SkToBool(params.fColorSpace); bool wantLegacy = (ColorMode::kLegacy == fColorMode) || (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode); if (wasInLegacy != wantLegacy) { params.fColorSpace = wantLegacy ? nullptr : SkColorSpace::MakeSRGB(); fWindow->setRequestedDisplayParams(params); } this->updateTitle(); fWindow->inval(); } class OveridePaintFilterCanvas : public SkPaintFilterCanvas { public: OveridePaintFilterCanvas(SkCanvas* canvas, SkPaint* paint, Viewer::SkPaintFields* fields) : SkPaintFilterCanvas(canvas), fPaint(paint), fPaintOverrides(fields) { } bool onFilter(SkTCopyOnFirstWrite* paint, Type) const override { if (*paint == nullptr) { return true; } if (fPaintOverrides->fHinting) { paint->writable()->setHinting(fPaint->getHinting()); } if (fPaintOverrides->fFlags & SkPaint::kAntiAlias_Flag) { paint->writable()->setAntiAlias(fPaint->isAntiAlias()); } if (fPaintOverrides->fFlags & SkPaint::kDither_Flag) { paint->writable()->setDither(fPaint->isDither()); } if (fPaintOverrides->fFlags & SkPaint::kFakeBoldText_Flag) { paint->writable()->setFakeBoldText(fPaint->isFakeBoldText()); } if (fPaintOverrides->fFlags & SkPaint::kLinearText_Flag) { paint->writable()->setLinearText(fPaint->isLinearText()); } if (fPaintOverrides->fFlags & SkPaint::kSubpixelText_Flag) { paint->writable()->setSubpixelText(fPaint->isSubpixelText()); } if (fPaintOverrides->fFlags & SkPaint::kLCDRenderText_Flag) { paint->writable()->setLCDRenderText(fPaint->isLCDRenderText()); } if (fPaintOverrides->fFlags & SkPaint::kEmbeddedBitmapText_Flag) { paint->writable()->setEmbeddedBitmapText(fPaint->isEmbeddedBitmapText()); } if (fPaintOverrides->fFlags & SkPaint::kAutoHinting_Flag) { paint->writable()->setAutohinted(fPaint->isAutohinted()); } if (fPaintOverrides->fFlags & SkPaint::kVerticalText_Flag) { paint->writable()->setVerticalText(fPaint->isVerticalText()); } return true; } SkPaint* fPaint; Viewer::SkPaintFields* fPaintOverrides; }; void Viewer::drawSlide(SkCanvas* canvas) { SkAutoCanvasRestore autorestore(canvas, false); // By default, we render directly into the window's surface/canvas SkCanvas* slideCanvas = canvas; fLastImage.reset(); // If we're in any of the color managed modes, construct the color space we're going to use sk_sp cs = nullptr; if (ColorMode::kLegacy != fColorMode) { auto transferFn = (ColorMode::kColorManagedLinearF16 == fColorMode) ? SkColorSpace::kLinear_RenderTargetGamma : SkColorSpace::kSRGB_RenderTargetGamma; SkMatrix44 toXYZ(SkMatrix44::kIdentity_Constructor); SkAssertResult(fColorSpacePrimaries.toXYZD50(&toXYZ)); if (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) { cs = SkColorSpace::MakeRGB(fColorSpaceTransferFn, toXYZ); } else { cs = SkColorSpace::MakeRGB(transferFn, toXYZ); } } if (fSaveToSKP) { SkPictureRecorder recorder; SkCanvas* recorderCanvas = recorder.beginRecording( SkRect::Make(fSlides[fCurrentSlide]->getDimensions())); // In xform-canvas mode, record the transformed output std::unique_ptr xformCanvas = nullptr; if (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) { xformCanvas = SkCreateColorSpaceXformCanvas(recorderCanvas, cs); recorderCanvas = xformCanvas.get(); } fSlides[fCurrentSlide]->draw(recorderCanvas); sk_sp picture(recorder.finishRecordingAsPicture()); SkFILEWStream stream("sample_app.skp"); picture->serialize(&stream); fSaveToSKP = false; } // If we're in F16, or we're zooming, or we're in color correct 8888 and the gamut isn't sRGB, // we need to render offscreen. We also need to render offscreen if we're in any raster mode, // because the window surface is actually GL, or we're doing fake perspective. sk_sp offscreenSurface = nullptr; std::unique_ptr threadedCanvas; if (Window::kRaster_BackendType == fBackendType || kPerspective_Fake == fPerspectiveMode || ColorMode::kColorManagedLinearF16 == fColorMode || fShowZoomWindow || (ColorMode::kColorManagedSRGB8888 == fColorMode && !primaries_equal(fColorSpacePrimaries, gSrgbPrimaries))) { SkColorType colorType = (ColorMode::kColorManagedLinearF16 == fColorMode) ? kRGBA_F16_SkColorType : kN32_SkColorType; // In nonlinear blending mode, we actually use a legacy off-screen canvas, and wrap it // with a special canvas (below) that has the color space attached sk_sp offscreenColorSpace = (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) ? nullptr : cs; SkImageInfo info = SkImageInfo::Make(fWindow->width(), fWindow->height(), colorType, kPremul_SkAlphaType, std::move(offscreenColorSpace)); SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType); canvas->getProps(&props); offscreenSurface = Window::kRaster_BackendType == fBackendType ? SkSurface::MakeRaster(info, &props) : canvas->makeSurface(info); SkPixmap offscreenPixmap; if (fTileCnt > 0 && offscreenSurface->peekPixels(&offscreenPixmap)) { SkBitmap offscreenBitmap; offscreenBitmap.installPixels(offscreenPixmap); threadedCanvas = skstd::make_unique( sk_make_sp( offscreenBitmap, fTileCnt, fThreadCnt, fExecutor.get())); slideCanvas = threadedCanvas.get(); } else { slideCanvas = offscreenSurface->getCanvas(); } } std::unique_ptr xformCanvas = nullptr; if (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) { xformCanvas = SkCreateColorSpaceXformCanvas(slideCanvas, cs); slideCanvas = xformCanvas.get(); } int count = slideCanvas->save(); slideCanvas->clear(SK_ColorWHITE); slideCanvas->concat(computeMatrix()); // Time the painting logic of the slide fStatsLayer.beginTiming(fPaintTimer); OveridePaintFilterCanvas filterCanvas(slideCanvas, &fPaint, &fPaintOverrides); fSlides[fCurrentSlide]->draw(&filterCanvas); fStatsLayer.endTiming(fPaintTimer); slideCanvas->restoreToCount(count); // Force a flush so we can time that, too fStatsLayer.beginTiming(fFlushTimer); slideCanvas->flush(); fStatsLayer.endTiming(fFlushTimer); // If we rendered offscreen, snap an image and push the results to the window's canvas if (offscreenSurface) { fLastImage = offscreenSurface->makeImageSnapshot(); // Tag the image with the sRGB gamut, so no further color space conversion happens sk_sp srgb = (ColorMode::kColorManagedLinearF16 == fColorMode) ? SkColorSpace::MakeSRGBLinear() : SkColorSpace::MakeSRGB(); auto retaggedImage = SkImageMakeRasterCopyAndAssignColorSpace(fLastImage.get(), srgb.get()); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); int prePerspectiveCount = canvas->save(); if (kPerspective_Fake == fPerspectiveMode) { paint.setFilterQuality(kHigh_SkFilterQuality); canvas->clear(SK_ColorWHITE); canvas->concat(this->computePerspectiveMatrix()); } canvas->drawImage(retaggedImage, 0, 0, &paint); canvas->restoreToCount(prePerspectiveCount); } } void Viewer::onBackendCreated() { this->setupCurrentSlide(); fWindow->show(); } void Viewer::onPaint(SkCanvas* canvas) { this->drawSlide(canvas); fCommands.drawHelp(canvas); this->drawImGui(); } SkPoint Viewer::mapEvent(float x, float y) { const auto m = this->computeMatrix(); SkMatrix inv; SkAssertResult(m.invert(&inv)); return inv.mapXY(x, y); } bool Viewer::onTouch(intptr_t owner, Window::InputState state, float x, float y) { if (GestureDevice::kMouse == fGestureDevice) { return false; } const auto slidePt = this->mapEvent(x, y); if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, 0)) { fWindow->inval(); return true; } void* castedOwner = reinterpret_cast(owner); switch (state) { case Window::kUp_InputState: { fGesture.touchEnd(castedOwner); break; } case Window::kDown_InputState: { fGesture.touchBegin(castedOwner, x, y); break; } case Window::kMove_InputState: { fGesture.touchMoved(castedOwner, x, y); break; } } fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kTouch : GestureDevice::kNone; fWindow->inval(); return true; } bool Viewer::onMouse(int x, int y, Window::InputState state, uint32_t modifiers) { if (GestureDevice::kTouch == fGestureDevice) { return false; } const auto slidePt = this->mapEvent(x, y); if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, modifiers)) { fWindow->inval(); return true; } switch (state) { case Window::kUp_InputState: { fGesture.touchEnd(nullptr); break; } case Window::kDown_InputState: { fGesture.touchBegin(nullptr, x, y); break; } case Window::kMove_InputState: { fGesture.touchMoved(nullptr, x, y); break; } } fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kMouse : GestureDevice::kNone; if (state != Window::kMove_InputState || fGesture.isBeingTouched()) { fWindow->inval(); } return true; } static ImVec2 ImGui_DragPrimary(const char* label, float* x, float* y, const ImVec2& pos, const ImVec2& size) { // Transform primaries ([0, 0] - [0.8, 0.9]) to screen coords (including Y-flip) ImVec2 center(pos.x + (*x / 0.8f) * size.x, pos.y + (1.0f - (*y / 0.9f)) * size.y); // Invisible 10x10 button ImGui::SetCursorScreenPos(ImVec2(center.x - 5, center.y - 5)); ImGui::InvisibleButton(label, ImVec2(10, 10)); if (ImGui::IsItemActive() && ImGui::IsMouseDragging()) { ImGuiIO& io = ImGui::GetIO(); // Normalized mouse position, relative to our gamut box ImVec2 mousePosXY((io.MousePos.x - pos.x) / size.x, (io.MousePos.y - pos.y) / size.y); // Clamp to edge of box, convert back to primary scale *x = SkTPin(mousePosXY.x, 0.0f, 1.0f) * 0.8f; *y = SkTPin(1 - mousePosXY.y, 0.0f, 1.0f) * 0.9f; } if (ImGui::IsItemHovered()) { ImGui::SetTooltip("x: %.3f\ny: %.3f", *x, *y); } // Return screen coordinates for the caller. We could just return center here, but we'd have // one frame of lag during drag. return ImVec2(pos.x + (*x / 0.8f) * size.x, pos.y + (1.0f - (*y / 0.9f)) * size.y); } static void ImGui_Primaries(SkColorSpacePrimaries* primaries, SkPaint* gamutPaint) { ImDrawList* drawList = ImGui::GetWindowDrawList(); // The gamut image covers a (0.8 x 0.9) shaped region, so fit our image/canvas to the available // width, and scale the height to maintain aspect ratio. float canvasWidth = SkTMax(ImGui::GetContentRegionAvailWidth(), 50.0f); ImVec2 size = ImVec2(canvasWidth, canvasWidth * (0.9f / 0.8f)); ImVec2 pos = ImGui::GetCursorScreenPos(); // Background image. Only draw a subset of the image, to avoid the regions less than zero. // Simplifes re-mapping math, clipping behavior, and increases resolution in the useful area. // Magic numbers are pixel locations of the origin and upper-right corner. drawList->AddImage(gamutPaint, pos, ImVec2(pos.x + size.x, pos.y + size.y), ImVec2(242, 61), ImVec2(1897, 1922)); // Primary markers ImVec2 r = ImGui_DragPrimary("R", &primaries->fRX, &primaries->fRY, pos, size); ImVec2 g = ImGui_DragPrimary("G", &primaries->fGX, &primaries->fGY, pos, size); ImVec2 b = ImGui_DragPrimary("B", &primaries->fBX, &primaries->fBY, pos, size); ImVec2 w = ImGui_DragPrimary("W", &primaries->fWX, &primaries->fWY, pos, size); // Gamut triangle drawList->AddCircle(r, 5.0f, 0xFF000040); drawList->AddCircle(g, 5.0f, 0xFF004000); drawList->AddCircle(b, 5.0f, 0xFF400000); drawList->AddCircle(w, 5.0f, 0xFFFFFFFF); drawList->AddTriangle(r, g, b, 0xFFFFFFFF); // Re-position cursor immediate after the diagram for subsequent controls ImGui::SetCursorScreenPos(ImVec2(pos.x, pos.y + size.y)); } static ImVec2 ImGui_DragPoint(const char* label, SkPoint* p, const ImVec2& pos, const ImVec2& size, bool* dragging) { // Transform points ([0, 0] - [1.0, 1.0]) to screen coords ImVec2 center(pos.x + p->fX * size.x, pos.y + p->fY * size.y); // Invisible 10x10 button ImGui::SetCursorScreenPos(ImVec2(center.x - 5, center.y - 5)); ImGui::InvisibleButton(label, ImVec2(10, 10)); if (ImGui::IsItemActive() && ImGui::IsMouseDragging()) { ImGuiIO& io = ImGui::GetIO(); // Normalized mouse position, relative to our gamut box ImVec2 mousePosXY((io.MousePos.x - pos.x) / size.x, (io.MousePos.y - pos.y) / size.y); // Clamp to edge of box p->fX = SkTPin(mousePosXY.x, 0.0f, 1.0f); p->fY = SkTPin(mousePosXY.y, 0.0f, 1.0f); *dragging = true; } // Return screen coordinates for the caller. We could just return center here, but we'd have // one frame of lag during drag. return ImVec2(pos.x + p->fX * size.x, pos.y + p->fY * size.y); } static bool ImGui_DragQuad(SkPoint* pts) { ImDrawList* drawList = ImGui::GetWindowDrawList(); // Fit our image/canvas to the available width, and scale the height to maintain aspect ratio. float canvasWidth = SkTMax(ImGui::GetContentRegionAvailWidth(), 50.0f); ImVec2 size = ImVec2(canvasWidth, canvasWidth); ImVec2 pos = ImGui::GetCursorScreenPos(); // Background rectangle drawList->AddRectFilled(pos, ImVec2(pos.x + size.x, pos.y + size.y), IM_COL32(0, 0, 0, 128)); // Corner markers bool dragging = false; ImVec2 tl = ImGui_DragPoint("TL", pts + 0, pos, size, &dragging); ImVec2 tr = ImGui_DragPoint("TR", pts + 1, pos, size, &dragging); ImVec2 bl = ImGui_DragPoint("BL", pts + 2, pos, size, &dragging); ImVec2 br = ImGui_DragPoint("BR", pts + 3, pos, size, &dragging); // Draw markers and quad drawList->AddCircle(tl, 5.0f, 0xFFFFFFFF); drawList->AddCircle(tr, 5.0f, 0xFFFFFFFF); drawList->AddCircle(bl, 5.0f, 0xFFFFFFFF); drawList->AddCircle(br, 5.0f, 0xFFFFFFFF); drawList->AddLine(tl, tr, 0xFFFFFFFF); drawList->AddLine(tr, br, 0xFFFFFFFF); drawList->AddLine(br, bl, 0xFFFFFFFF); drawList->AddLine(bl, tl, 0xFFFFFFFF); ImGui::SetCursorScreenPos(ImVec2(pos.x, pos.y + size.y)); ImGui::Spacing(); return dragging; } void Viewer::drawImGui() { // Support drawing the ImGui demo window. Superfluous, but gives a good idea of what's possible if (fShowImGuiTestWindow) { ImGui::ShowTestWindow(&fShowImGuiTestWindow); } if (fShowImGuiDebugWindow) { // We have some dynamic content that sizes to fill available size. If the scroll bar isn't // always visible, we can end up in a layout feedback loop. ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiSetCond_FirstUseEver); DisplayParams params = fWindow->getRequestedDisplayParams(); bool paramsChanged = false; if (ImGui::Begin("Tools", &fShowImGuiDebugWindow, ImGuiWindowFlags_AlwaysVerticalScrollbar)) { if (ImGui::CollapsingHeader("Backend")) { int newBackend = static_cast(fBackendType); ImGui::RadioButton("Raster", &newBackend, sk_app::Window::kRaster_BackendType); ImGui::SameLine(); ImGui::RadioButton("OpenGL", &newBackend, sk_app::Window::kNativeGL_BackendType); #if SK_ANGLE && defined(SK_BUILD_FOR_WIN) ImGui::SameLine(); ImGui::RadioButton("ANGLE", &newBackend, sk_app::Window::kANGLE_BackendType); #endif #if defined(SK_VULKAN) ImGui::SameLine(); ImGui::RadioButton("Vulkan", &newBackend, sk_app::Window::kVulkan_BackendType); #endif if (newBackend != fBackendType) { fDeferredActions.push_back([=]() { this->setBackend(static_cast(newBackend)); }); } const GrContext* ctx = fWindow->getGrContext(); bool* wire = ¶ms.fGrContextOptions.fWireframeMode; if (ctx && ImGui::Checkbox("Wireframe Mode", wire)) { paramsChanged = true; } if (ctx) { int sampleCount = fWindow->sampleCount(); ImGui::Text("MSAA: "); ImGui::SameLine(); ImGui::RadioButton("1", &sampleCount, 1); ImGui::SameLine(); ImGui::RadioButton("4", &sampleCount, 4); ImGui::SameLine(); ImGui::RadioButton("8", &sampleCount, 8); ImGui::SameLine(); ImGui::RadioButton("16", &sampleCount, 16); if (sampleCount != params.fMSAASampleCount) { params.fMSAASampleCount = sampleCount; paramsChanged = true; } } int pixelGeometryIdx = 0; if (fPixelGeometryOverrides) { pixelGeometryIdx = params.fSurfaceProps.pixelGeometry() + 1; } if (ImGui::Combo("Pixel Geometry", &pixelGeometryIdx, "Default\0Flat\0RGB\0BGR\0RGBV\0BGRV\0\0")) { uint32_t flags = params.fSurfaceProps.flags(); if (pixelGeometryIdx == 0) { fPixelGeometryOverrides = false; params.fSurfaceProps = SkSurfaceProps(flags, SkSurfaceProps::kLegacyFontHost_InitType); } else { fPixelGeometryOverrides = true; SkPixelGeometry pixelGeometry = SkTo(pixelGeometryIdx - 1); params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry); } paramsChanged = true; } bool useDFT = params.fSurfaceProps.isUseDeviceIndependentFonts(); if (ImGui::Checkbox("DFT", &useDFT)) { uint32_t flags = params.fSurfaceProps.flags(); if (useDFT) { flags |= SkSurfaceProps::kUseDeviceIndependentFonts_Flag; } else { flags &= ~SkSurfaceProps::kUseDeviceIndependentFonts_Flag; } SkPixelGeometry pixelGeometry = params.fSurfaceProps.pixelGeometry(); params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry); paramsChanged = true; } if (ImGui::TreeNode("Path Renderers")) { GpuPathRenderers prevPr = params.fGrContextOptions.fGpuPathRenderers; auto prButton = [&](GpuPathRenderers x) { if (ImGui::RadioButton(gPathRendererNames[x].c_str(), prevPr == x)) { if (x != params.fGrContextOptions.fGpuPathRenderers) { params.fGrContextOptions.fGpuPathRenderers = x; paramsChanged = true; } } }; if (!ctx) { ImGui::RadioButton("Software", true); } else if (fWindow->sampleCount() > 1) { prButton(GpuPathRenderers::kDefault); prButton(GpuPathRenderers::kAll); if (ctx->caps()->shaderCaps()->pathRenderingSupport()) { prButton(GpuPathRenderers::kStencilAndCover); } prButton(GpuPathRenderers::kTessellating); prButton(GpuPathRenderers::kNone); } else { prButton(GpuPathRenderers::kDefault); prButton(GpuPathRenderers::kAll); if (GrCoverageCountingPathRenderer::IsSupported(*ctx->caps())) { prButton(GpuPathRenderers::kCoverageCounting); } prButton(GpuPathRenderers::kSmall); prButton(GpuPathRenderers::kTessellating); prButton(GpuPathRenderers::kNone); } ImGui::TreePop(); } } if (ImGui::CollapsingHeader("Transform")) { float zoom = fZoomLevel; if (ImGui::SliderFloat("Zoom", &zoom, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) { fZoomLevel = zoom; this->preTouchMatrixChanged(); paramsChanged = true; } float deg = fRotation; if (ImGui::SliderFloat("Rotate", °, -30, 360, "%.3f deg")) { fRotation = deg; this->preTouchMatrixChanged(); paramsChanged = true; } int perspectiveMode = static_cast(fPerspectiveMode); if (ImGui::Combo("Perspective", &perspectiveMode, "Off\0Real\0Fake\0\0")) { fPerspectiveMode = static_cast(perspectiveMode); this->preTouchMatrixChanged(); this->updateTitle(); } if (ImGui_DragQuad(fPerspectivePoints)) { this->preTouchMatrixChanged(); } } if (ImGui::CollapsingHeader("Paint")) { int hintingIdx = 0; if (fPaintOverrides.fHinting) { hintingIdx = fPaint.getHinting() + 1; } if (ImGui::Combo("Hinting", &hintingIdx, "Default\0None\0Slight\0Normal\0Full\0\0")) { if (hintingIdx == 0) { fPaintOverrides.fHinting = false; fPaint.setHinting(SkPaint::kNo_Hinting); } else { fPaintOverrides.fHinting = true; SkPaint::Hinting hinting = SkTo(hintingIdx - 1); fPaint.setHinting(hinting); } paramsChanged = true; } int aliasIdx = 0; if (fPaintOverrides.fFlags & SkPaint::kAntiAlias_Flag) { aliasIdx = SkTo(fPaintOverrides.fAntiAlias) + 1; } if (ImGui::Combo("Anti-Alias", &aliasIdx, "Default\0Alias\0Normal\0AnalyticAAEnabled\0AnalyticAAForced\0" "DeltaAAEnabled\0DeltaAAForced\0\0")) { gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA; gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA; gSkUseDeltaAA = fPaintOverrides.fOriginalSkUseDeltaAA; gSkForceDeltaAA = fPaintOverrides.fOriginalSkForceDeltaAA; if (aliasIdx == 0) { fPaintOverrides.fAntiAlias = SkPaintFields::AntiAliasState::Alias; fPaintOverrides.fFlags &= ~SkPaint::kAntiAlias_Flag; } else { fPaintOverrides.fFlags |= SkPaint::kAntiAlias_Flag; fPaintOverrides.fAntiAlias =SkTo(aliasIdx-1); fPaint.setAntiAlias(aliasIdx > 1); switch (fPaintOverrides.fAntiAlias) { case SkPaintFields::AntiAliasState::Alias: break; case SkPaintFields::AntiAliasState::Normal: break; case SkPaintFields::AntiAliasState::AnalyticAAEnabled: gSkUseAnalyticAA = true; gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::AnalyticAAForced: gSkUseAnalyticAA = gSkForceAnalyticAA = true; gSkUseDeltaAA = gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::DeltaAAEnabled: gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = true; gSkForceDeltaAA = false; break; case SkPaintFields::AntiAliasState::DeltaAAForced: gSkUseAnalyticAA = gSkForceAnalyticAA = false; gSkUseDeltaAA = gSkForceDeltaAA = true; break; } } paramsChanged = true; } auto paintFlag = [this, ¶msChanged](const char* label, const char* items, SkPaint::Flags flag, bool (SkPaint::* isFlag)() const, void (SkPaint::* setFlag)(bool) ) { int itemIndex = 0; if (fPaintOverrides.fFlags & flag) { itemIndex = (fPaint.*isFlag)() ? 2 : 1; } if (ImGui::Combo(label, &itemIndex, items)) { if (itemIndex == 0) { fPaintOverrides.fFlags &= ~flag; } else { fPaintOverrides.fFlags |= flag; (fPaint.*setFlag)(itemIndex == 2); } paramsChanged = true; } }; paintFlag("Dither", "Default\0No Dither\0Dither\0\0", SkPaint::kDither_Flag, &SkPaint::isDither, &SkPaint::setDither); paintFlag("Fake Bold Glyphs", "Default\0No Fake Bold\0Fake Bold\0\0", SkPaint::kFakeBoldText_Flag, &SkPaint::isFakeBoldText, &SkPaint::setFakeBoldText); paintFlag("Linear Text", "Default\0No Linear Text\0Linear Text\0\0", SkPaint::kLinearText_Flag, &SkPaint::isLinearText, &SkPaint::setLinearText); paintFlag("Subpixel Position Glyphs", "Default\0Pixel Text\0Subpixel Text\0\0", SkPaint::kSubpixelText_Flag, &SkPaint::isSubpixelText, &SkPaint::setSubpixelText); paintFlag("Subpixel Anti-Alias", "Default\0lcd\0LCD\0\0", SkPaint::kLCDRenderText_Flag, &SkPaint::isLCDRenderText, &SkPaint::setLCDRenderText); paintFlag("Embedded Bitmap Text", "Default\0No Embedded Bitmaps\0Embedded Bitmaps\0\0", SkPaint::kEmbeddedBitmapText_Flag, &SkPaint::isEmbeddedBitmapText, &SkPaint::setEmbeddedBitmapText); paintFlag("Force Auto-Hinting", "Default\0No Force Auto-Hinting\0Force Auto-Hinting\0\0", SkPaint::kAutoHinting_Flag, &SkPaint::isAutohinted, &SkPaint::setAutohinted); paintFlag("Vertical Text", "Default\0No Vertical Text\0Vertical Text\0\0", SkPaint::kVerticalText_Flag, &SkPaint::isVerticalText, &SkPaint::setVerticalText); } if (fShowSlidePicker) { ImGui::SetNextTreeNodeOpen(true); } if (ImGui::CollapsingHeader("Slide")) { static ImGuiTextFilter filter; static ImVector filteredSlideNames; static ImVector filteredSlideIndices; if (fShowSlidePicker) { ImGui::SetKeyboardFocusHere(); fShowSlidePicker = false; } filter.Draw(); filteredSlideNames.clear(); filteredSlideIndices.clear(); int filteredIndex = 0; for (int i = 0; i < fSlides.count(); ++i) { const char* slideName = fSlides[i]->getName().c_str(); if (filter.PassFilter(slideName) || i == fCurrentSlide) { if (i == fCurrentSlide) { filteredIndex = filteredSlideIndices.size(); } filteredSlideNames.push_back(slideName); filteredSlideIndices.push_back(i); } } if (ImGui::ListBox("", &filteredIndex, filteredSlideNames.begin(), filteredSlideNames.size(), 20)) { this->setCurrentSlide(filteredSlideIndices[filteredIndex]); } } if (ImGui::CollapsingHeader("Color Mode")) { ColorMode newMode = fColorMode; auto cmButton = [&](ColorMode mode, const char* label) { if (ImGui::RadioButton(label, mode == fColorMode)) { newMode = mode; } }; cmButton(ColorMode::kLegacy, "Legacy 8888"); cmButton(ColorMode::kColorManagedSRGB8888_NonLinearBlending, "Color Managed 8888 (Nonlinear blending)"); cmButton(ColorMode::kColorManagedSRGB8888, "Color Managed 8888"); cmButton(ColorMode::kColorManagedLinearF16, "Color Managed F16"); if (newMode != fColorMode) { // It isn't safe to switch color mode now (in the middle of painting). We might // tear down the back-end, etc... Defer this change until the next onIdle. fDeferredActions.push_back([=]() { this->setColorMode(newMode); }); } // Pick from common gamuts: int primariesIdx = 4; // Default: Custom for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) { if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) { primariesIdx = i; break; } } // When we're in xform canvas mode, we can alter the transfer function, too if (ColorMode::kColorManagedSRGB8888_NonLinearBlending == fColorMode) { ImGui::SliderFloat("Gamma", &fColorSpaceTransferFn.fG, 0.5f, 3.5f); } if (ImGui::Combo("Primaries", &primariesIdx, "sRGB\0AdobeRGB\0P3\0Rec. 2020\0Custom\0\0")) { if (primariesIdx >= 0 && primariesIdx <= 3) { fColorSpacePrimaries = *gNamedPrimaries[primariesIdx].fPrimaries; } } // Allow direct editing of gamut ImGui_Primaries(&fColorSpacePrimaries, &fImGuiGamutPaint); } } if (paramsChanged) { fDeferredActions.push_back([=]() { fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); }); } ImGui::End(); } if (fShowZoomWindow && fLastImage) { if (ImGui::Begin("Zoom", &fShowZoomWindow, ImVec2(200, 200))) { static int zoomFactor = 8; if (ImGui::Button("<<")) { zoomFactor = SkTMax(zoomFactor / 2, 4); } ImGui::SameLine(); ImGui::Text("%2d", zoomFactor); ImGui::SameLine(); if (ImGui::Button(">>")) { zoomFactor = SkTMin(zoomFactor * 2, 32); } ImVec2 mousePos = ImGui::GetMousePos(); ImVec2 avail = ImGui::GetContentRegionAvail(); uint32_t pixel = 0; SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); if (fLastImage->readPixels(info, &pixel, info.minRowBytes(), mousePos.x, mousePos.y)) { ImGui::SameLine(); ImGui::Text("(X, Y): %d, %d RGBA: %x %x %x %x", sk_float_round2int(mousePos.x), sk_float_round2int(mousePos.y), SkGetPackedR32(pixel), SkGetPackedG32(pixel), SkGetPackedB32(pixel), SkGetPackedA32(pixel)); } fImGuiLayer.skiaWidget(avail, [=](SkCanvas* c) { // Translate so the region of the image that's under the mouse cursor is centered // in the zoom canvas: c->scale(zoomFactor, zoomFactor); c->translate(avail.x * 0.5f / zoomFactor - mousePos.x - 0.5f, avail.y * 0.5f / zoomFactor - mousePos.y - 0.5f); c->drawImage(this->fLastImage, 0, 0); SkPaint outline; outline.setStyle(SkPaint::kStroke_Style); c->drawRect(SkRect::MakeXYWH(mousePos.x, mousePos.y, 1, 1), outline); }); } ImGui::End(); } } void Viewer::onIdle() { for (int i = 0; i < fDeferredActions.count(); ++i) { fDeferredActions[i](); } fDeferredActions.reset(); fStatsLayer.beginTiming(fAnimateTimer); fAnimTimer.updateTime(); bool animateWantsInval = fSlides[fCurrentSlide]->animate(fAnimTimer); fStatsLayer.endTiming(fAnimateTimer); ImGuiIO& io = ImGui::GetIO(); if (animateWantsInval || fStatsLayer.getActive() || fRefresh || io.MetricsActiveWindows) { fWindow->inval(); } } void Viewer::updateUIState() { if (!fWindow) { return; } if (fWindow->sampleCount() < 1) { return; // Surface hasn't been created yet. } // Slide state Json::Value slideState(Json::objectValue); slideState[kName] = kSlideStateName; slideState[kValue] = fSlides[fCurrentSlide]->getName().c_str(); if (fAllSlideNames.size() == 0) { for(auto slide : fSlides) { fAllSlideNames.append(Json::Value(slide->getName().c_str())); } } slideState[kOptions] = fAllSlideNames; // Backend state Json::Value backendState(Json::objectValue); backendState[kName] = kBackendStateName; backendState[kValue] = kBackendTypeStrings[fBackendType]; backendState[kOptions] = Json::Value(Json::arrayValue); for (auto str : kBackendTypeStrings) { backendState[kOptions].append(Json::Value(str)); } // MSAA state Json::Value msaaState(Json::objectValue); msaaState[kName] = kMSAAStateName; msaaState[kValue] = fWindow->sampleCount(); msaaState[kOptions] = Json::Value(Json::arrayValue); if (sk_app::Window::kRaster_BackendType == fBackendType) { msaaState[kOptions].append(Json::Value(0)); } else { for (int msaa : {0, 4, 8, 16}) { msaaState[kOptions].append(Json::Value(msaa)); } } // Path renderer state GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers; Json::Value prState(Json::objectValue); prState[kName] = kPathRendererStateName; prState[kValue] = gPathRendererNames[pr]; prState[kOptions] = Json::Value(Json::arrayValue); const GrContext* ctx = fWindow->getGrContext(); if (!ctx) { prState[kOptions].append("Software"); } else if (fWindow->sampleCount() > 1) { prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kDefault]); prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kAll]); if (ctx->caps()->shaderCaps()->pathRenderingSupport()) { prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kStencilAndCover]); } prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kTessellating]); prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kNone]); } else { prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kDefault]); prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kAll]); if (GrCoverageCountingPathRenderer::IsSupported(*ctx->caps())) { prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kCoverageCounting]); } prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kSmall]); prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kTessellating]); prState[kOptions].append(gPathRendererNames[GpuPathRenderers::kNone]); } // Softkey state Json::Value softkeyState(Json::objectValue); softkeyState[kName] = kSoftkeyStateName; softkeyState[kValue] = kSoftkeyHint; softkeyState[kOptions] = Json::Value(Json::arrayValue); softkeyState[kOptions].append(kSoftkeyHint); for (const auto& softkey : fCommands.getCommandsAsSoftkeys()) { softkeyState[kOptions].append(Json::Value(softkey.c_str())); } Json::Value state(Json::arrayValue); state.append(slideState); state.append(backendState); state.append(msaaState); state.append(prState); state.append(softkeyState); fWindow->setUIState(state.toStyledString().c_str()); } void Viewer::onUIStateChanged(const SkString& stateName, const SkString& stateValue) { // For those who will add more features to handle the state change in this function: // After the change, please call updateUIState no notify the frontend (e.g., Android app). // For example, after slide change, updateUIState is called inside setupCurrentSlide; // after backend change, updateUIState is called in this function. if (stateName.equals(kSlideStateName)) { for (int i = 0; i < fSlides.count(); ++i) { if (fSlides[i]->getName().equals(stateValue)) { this->setCurrentSlide(i); return; } } SkDebugf("Slide not found: %s", stateValue.c_str()); } else if (stateName.equals(kBackendStateName)) { for (int i = 0; i < sk_app::Window::kBackendTypeCount; i++) { if (stateValue.equals(kBackendTypeStrings[i])) { if (fBackendType != i) { fBackendType = (sk_app::Window::BackendType)i; fWindow->detach(); fWindow->attach(backend_type_for_window(fBackendType)); } break; } } } else if (stateName.equals(kMSAAStateName)) { DisplayParams params = fWindow->getRequestedDisplayParams(); int sampleCount = atoi(stateValue.c_str()); if (sampleCount != params.fMSAASampleCount) { params.fMSAASampleCount = sampleCount; fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); this->updateUIState(); } } else if (stateName.equals(kPathRendererStateName)) { DisplayParams params = fWindow->getRequestedDisplayParams(); for (const auto& pair : gPathRendererNames) { if (pair.second == stateValue.c_str()) { if (params.fGrContextOptions.fGpuPathRenderers != pair.first) { params.fGrContextOptions.fGpuPathRenderers = pair.first; fWindow->setRequestedDisplayParams(params); fWindow->inval(); this->updateTitle(); this->updateUIState(); } break; } } } else if (stateName.equals(kSoftkeyStateName)) { if (!stateValue.equals(kSoftkeyHint)) { fCommands.onSoftkey(stateValue); this->updateUIState(); // This is still needed to reset the value to kSoftkeyHint } } else if (stateName.equals(kRefreshStateName)) { // This state is actually NOT in the UI state. // We use this to allow Android to quickly set bool fRefresh. fRefresh = stateValue.equals(kON); } else { SkDebugf("Unknown stateName: %s", stateName.c_str()); } } bool Viewer::onKey(sk_app::Window::Key key, sk_app::Window::InputState state, uint32_t modifiers) { return fCommands.onKey(key, state, modifiers); } bool Viewer::onChar(SkUnichar c, uint32_t modifiers) { if (fSlides[fCurrentSlide]->onChar(c)) { fWindow->inval(); return true; } else { return fCommands.onChar(c, modifiers); } }