/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_sse_DEFINED #define SkNx_sse_DEFINED #include "include/core/SkTypes.h" #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 #include #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 #include #else #include #endif // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. // If you do, make sure this is in a static inline function... anywhere else risks violating ODR. namespace { // NOLINT(google-build-namespaces) // Emulate _mm_floor_ps() with SSE2: // - roundtrip through integers via truncation // - subtract 1 if that's too big (possible for negative values). // This restricts the domain of our inputs to a maximum somehwere around 2^31. // Seems plenty big. AI static __m128 emulate_mm_floor_ps(__m128 v) { __m128 roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); __m128 too_big = _mm_cmpgt_ps(roundtrip, v); return _mm_sub_ps(roundtrip, _mm_and_ps(too_big, _mm_set1_ps(1.0f))); } template <> class SkNx<2, float> { public: AI SkNx(const __m128& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(float val) : fVec(_mm_set1_ps(val)) {} AI static SkNx Load(const void* ptr) { return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr)); } AI SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} AI void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); } AI static void Load2(const void* ptr, SkNx* x, SkNx* y) { const float* m = (const float*)ptr; *x = SkNx{m[0], m[2]}; *y = SkNx{m[1], m[3]}; } AI static void Store2(void* dst, const SkNx& a, const SkNx& b) { auto vals = _mm_unpacklo_ps(a.fVec, b.fVec); _mm_storeu_ps((float*)dst, vals); } AI static void Store3(void* dst, const SkNx& a, const SkNx& b, const SkNx& c) { auto lo = _mm_setr_ps(a[0], b[0], c[0], a[1]), hi = _mm_setr_ps(b[1], c[1], 0, 0); _mm_storeu_ps((float*)dst, lo); _mm_storel_pi(((__m64*)dst) + 2, hi); } AI static void Store4(void* dst, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) { auto lo = _mm_setr_ps(a[0], b[0], c[0], d[0]), hi = _mm_setr_ps(a[1], b[1], c[1], d[1]); _mm_storeu_ps((float*)dst, lo); _mm_storeu_ps(((float*)dst) + 4, hi); } AI SkNx operator - () const { return _mm_xor_ps(_mm_set1_ps(-0.0f), fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } AI SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } AI SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } AI SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } AI SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } AI static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } AI static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } AI SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } AI SkNx floor() const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_floor_ps(fVec); #else return emulate_mm_floor_ps(fVec); #endif } AI SkNx sqrt() const { return _mm_sqrt_ps (fVec); } AI SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } AI SkNx invert() const { return _mm_rcp_ps(fVec); } AI float operator[](int k) const { SkASSERT(0 <= k && k < 2); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&1]; } AI bool allTrue() const { return 0b11 == (_mm_movemask_ps(fVec) & 0b11); } AI bool anyTrue() const { return 0b00 != (_mm_movemask_ps(fVec) & 0b11); } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_blendv_ps(e.fVec, t.fVec, fVec); #else return _mm_or_ps(_mm_and_ps (fVec, t.fVec), _mm_andnot_ps(fVec, e.fVec)); #endif } __m128 fVec; }; template <> class SkNx<4, float> { public: AI SkNx(const __m128& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(float val) : fVec( _mm_set1_ps(val) ) {} AI SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} AI static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); } AI void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); } AI static void Load2(const void* ptr, SkNx* x, SkNx* y) { SkNx lo = SkNx::Load((const float*)ptr+0), hi = SkNx::Load((const float*)ptr+4); *x = SkNx{lo[0], lo[2], hi[0], hi[2]}; *y = SkNx{lo[1], lo[3], hi[1], hi[3]}; } AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { __m128 v0 = _mm_loadu_ps(((float*)ptr) + 0), v1 = _mm_loadu_ps(((float*)ptr) + 4), v2 = _mm_loadu_ps(((float*)ptr) + 8), v3 = _mm_loadu_ps(((float*)ptr) + 12); _MM_TRANSPOSE4_PS(v0, v1, v2, v3); *r = v0; *g = v1; *b = v2; *a = v3; } AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { __m128 v0 = r.fVec, v1 = g.fVec, v2 = b.fVec, v3 = a.fVec; _MM_TRANSPOSE4_PS(v0, v1, v2, v3); _mm_storeu_ps(((float*) dst) + 0, v0); _mm_storeu_ps(((float*) dst) + 4, v1); _mm_storeu_ps(((float*) dst) + 8, v2); _mm_storeu_ps(((float*) dst) + 12, v3); } AI SkNx operator - () const { return _mm_xor_ps(_mm_set1_ps(-0.0f), fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } AI SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } AI SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } AI SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } AI SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } AI static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } AI static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } AI SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } AI SkNx floor() const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_floor_ps(fVec); #else return emulate_mm_floor_ps(fVec); #endif } AI SkNx sqrt() const { return _mm_sqrt_ps (fVec); } AI SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } AI SkNx invert() const { return _mm_rcp_ps(fVec); } AI float operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&3]; } AI float min() const { SkNx min = Min(*this, _mm_shuffle_ps(fVec, fVec, _MM_SHUFFLE(2,3,0,1))); min = Min(min, _mm_shuffle_ps(min.fVec, min.fVec, _MM_SHUFFLE(0,1,2,3))); return min[0]; } AI float max() const { SkNx max = Max(*this, _mm_shuffle_ps(fVec, fVec, _MM_SHUFFLE(2,3,0,1))); max = Max(max, _mm_shuffle_ps(max.fVec, max.fVec, _MM_SHUFFLE(0,1,2,3))); return max[0]; } AI bool allTrue() const { return 0b1111 == _mm_movemask_ps(fVec); } AI bool anyTrue() const { return 0b0000 != _mm_movemask_ps(fVec); } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_blendv_ps(e.fVec, t.fVec, fVec); #else return _mm_or_ps(_mm_and_ps (fVec, t.fVec), _mm_andnot_ps(fVec, e.fVec)); #endif } __m128 fVec; }; AI static __m128i mullo32(__m128i a, __m128i b) { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_mullo_epi32(a, b); #else __m128i mul20 = _mm_mul_epu32(a, b), mul31 = _mm_mul_epu32(_mm_srli_si128(a, 4), _mm_srli_si128(b, 4)); return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); #endif } template <> class SkNx<4, int32_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(int32_t val) : fVec(_mm_set1_epi32(val)) {} AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_setr_epi32(a,b,c,d)) {} AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } AI SkNx operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); } AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); } AI int32_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; int32_t is[4]; } pun = {fVec}; return pun.is[k&3]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_blendv_epi8(e.fVec, t.fVec, fVec); #else return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); #endif } AI SkNx abs() const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 return _mm_abs_epi32(fVec); #else SkNx mask = (*this) >> 31; return (mask ^ (*this)) - mask; #endif } AI static SkNx Min(const SkNx& x, const SkNx& y) { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_min_epi32(x.fVec, y.fVec); #else return (x < y).thenElse(x, y); #endif } AI static SkNx Max(const SkNx& x, const SkNx& y) { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_max_epi32(x.fVec, y.fVec); #else return (x > y).thenElse(x, y); #endif } __m128i fVec; }; template <> class SkNx<2, uint32_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint32_t val) : fVec(_mm_set1_epi32(val)) {} AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } AI SkNx(uint32_t a, uint32_t b) : fVec(_mm_setr_epi32(a,b,0,0)) {} AI void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } AI SkNx operator >> (int bits) const { return _mm_srli_epi32(fVec, bits); } AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } AI SkNx operator != (const SkNx& o) const { return (*this == o) ^ 0xffffffff; } // operator < and > take a little extra fiddling to make work for unsigned ints. AI uint32_t operator[](int k) const { SkASSERT(0 <= k && k < 2); union { __m128i v; uint32_t us[4]; } pun = {fVec}; return pun.us[k&1]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_blendv_epi8(e.fVec, t.fVec, fVec); #else return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); #endif } AI bool allTrue() const { return 0xff == (_mm_movemask_epi8(fVec) & 0xff); } __m128i fVec; }; template <> class SkNx<4, uint32_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint32_t val) : fVec(_mm_set1_epi32(val)) {} AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) : fVec(_mm_setr_epi32(a,b,c,d)) {} AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } AI SkNx operator >> (int bits) const { return _mm_srli_epi32(fVec, bits); } AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } AI SkNx operator != (const SkNx& o) const { return (*this == o) ^ 0xffffffff; } // operator < and > take a little extra fiddling to make work for unsigned ints. AI uint32_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; uint32_t us[4]; } pun = {fVec}; return pun.us[k&3]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 return _mm_blendv_epi8(e.fVec, t.fVec, fVec); #else return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); #endif } AI SkNx mulHi(SkNx m) const { SkNx v20{_mm_mul_epu32(m.fVec, fVec)}; SkNx v31{_mm_mul_epu32(_mm_srli_si128(m.fVec, 4), _mm_srli_si128(fVec, 4))}; return SkNx{v20[1], v31[1], v20[3], v31[3]}; } __m128i fVec; }; template <> class SkNx<4, uint16_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } AI void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { __m128i lo = _mm_loadu_si128(((__m128i*)ptr) + 0), hi = _mm_loadu_si128(((__m128i*)ptr) + 1); __m128i even = _mm_unpacklo_epi16(lo, hi), // r0 r2 g0 g2 b0 b2 a0 a2 odd = _mm_unpackhi_epi16(lo, hi); // r1 r3 ... __m128i rg = _mm_unpacklo_epi16(even, odd), // r0 r1 r2 r3 g0 g1 g2 g3 ba = _mm_unpackhi_epi16(even, odd); // b0 b1 ... a0 a1 ... *r = rg; *g = _mm_srli_si128(rg, 8); *b = ba; *a = _mm_srli_si128(ba, 8); } AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { // The idea here is to get 4 vectors that are R G B _ _ _ _ _. // The second load is at a funny location to make sure we don't read past // the bounds of memory. This is fine, we just need to shift it a little bit. const uint8_t* ptr8 = (const uint8_t*) ptr; __m128i rgb0 = _mm_loadu_si128((const __m128i*) (ptr8 + 0)); __m128i rgb1 = _mm_srli_si128(rgb0, 3*2); __m128i rgb2 = _mm_srli_si128(_mm_loadu_si128((const __m128i*) (ptr8 + 4*2)), 2*2); __m128i rgb3 = _mm_srli_si128(rgb2, 3*2); __m128i rrggbb01 = _mm_unpacklo_epi16(rgb0, rgb1); __m128i rrggbb23 = _mm_unpacklo_epi16(rgb2, rgb3); *r = _mm_unpacklo_epi32(rrggbb01, rrggbb23); *g = _mm_srli_si128(r->fVec, 4*2); *b = _mm_unpackhi_epi32(rrggbb01, rrggbb23); } AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { __m128i rg = _mm_unpacklo_epi16(r.fVec, g.fVec); __m128i ba = _mm_unpacklo_epi16(b.fVec, a.fVec); __m128i lo = _mm_unpacklo_epi32(rg, ba); __m128i hi = _mm_unpackhi_epi32(rg, ba); _mm_storeu_si128(((__m128i*) dst) + 0, lo); _mm_storeu_si128(((__m128i*) dst) + 1, hi); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } AI SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } AI SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } AI uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&3]; } __m128i fVec; }; template <> class SkNx<8, uint16_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { __m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0), _23 = _mm_loadu_si128(((__m128i*)ptr) + 1), _45 = _mm_loadu_si128(((__m128i*)ptr) + 2), _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); __m128i _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 _46 = _mm_unpacklo_epi16(_45, _67), _57 = _mm_unpackhi_epi16(_45, _67); __m128i rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 rg4567 = _mm_unpacklo_epi16(_46, _57), ba4567 = _mm_unpackhi_epi16(_46, _57); *r = _mm_unpacklo_epi64(rg0123, rg4567); *g = _mm_unpackhi_epi64(rg0123, rg4567); *b = _mm_unpacklo_epi64(ba0123, ba4567); *a = _mm_unpackhi_epi64(ba0123, ba4567); } AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { const uint8_t* ptr8 = (const uint8_t*) ptr; __m128i rgb0 = _mm_loadu_si128((const __m128i*) (ptr8 + 0*2)); __m128i rgb1 = _mm_srli_si128(rgb0, 3*2); __m128i rgb2 = _mm_loadu_si128((const __m128i*) (ptr8 + 6*2)); __m128i rgb3 = _mm_srli_si128(rgb2, 3*2); __m128i rgb4 = _mm_loadu_si128((const __m128i*) (ptr8 + 12*2)); __m128i rgb5 = _mm_srli_si128(rgb4, 3*2); __m128i rgb6 = _mm_srli_si128(_mm_loadu_si128((const __m128i*) (ptr8 + 16*2)), 2*2); __m128i rgb7 = _mm_srli_si128(rgb6, 3*2); __m128i rgb01 = _mm_unpacklo_epi16(rgb0, rgb1); __m128i rgb23 = _mm_unpacklo_epi16(rgb2, rgb3); __m128i rgb45 = _mm_unpacklo_epi16(rgb4, rgb5); __m128i rgb67 = _mm_unpacklo_epi16(rgb6, rgb7); __m128i rg03 = _mm_unpacklo_epi32(rgb01, rgb23); __m128i bx03 = _mm_unpackhi_epi32(rgb01, rgb23); __m128i rg47 = _mm_unpacklo_epi32(rgb45, rgb67); __m128i bx47 = _mm_unpackhi_epi32(rgb45, rgb67); *r = _mm_unpacklo_epi64(rg03, rg47); *g = _mm_unpackhi_epi64(rg03, rg47); *b = _mm_unpacklo_epi64(bx03, bx47); } AI static void Store4(void* ptr, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { __m128i rg0123 = _mm_unpacklo_epi16(r.fVec, g.fVec), // r0 g0 r1 g1 r2 g2 r3 g3 rg4567 = _mm_unpackhi_epi16(r.fVec, g.fVec), // r4 g4 r5 g5 r6 g6 r7 g7 ba0123 = _mm_unpacklo_epi16(b.fVec, a.fVec), ba4567 = _mm_unpackhi_epi16(b.fVec, a.fVec); _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg0123, ba0123)); _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg0123, ba0123)); _mm_storeu_si128((__m128i*)ptr + 2, _mm_unpacklo_epi32(rg4567, ba4567)); _mm_storeu_si128((__m128i*)ptr + 3, _mm_unpackhi_epi32(rg4567, ba4567)); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } AI SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } AI SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } AI static SkNx Min(const SkNx& a, const SkNx& b) { // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the // signed version, _mm_min_epi16, then shift back. const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. const __m128i top_8x = _mm_set1_epi16(top); return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), _mm_sub_epi8(b.fVec, top_8x))); } AI SkNx mulHi(const SkNx& m) const { return _mm_mulhi_epu16(fVec, m.fVec); } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } AI uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 8); union { __m128i v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&7]; } __m128i fVec; }; template <> class SkNx<4, uint8_t> { public: AI SkNx() {} AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) : fVec(_mm_setr_epi8(a,b,c,d, 0,0,0,0, 0,0,0,0, 0,0,0,0)) {} AI static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); } AI void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&3]; } // TODO as needed __m128i fVec; }; template <> class SkNx<8, uint8_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h) : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, 0,0,0,0, 0,0,0,0)) {} AI void store(void* ptr) const {_mm_storel_epi64((__m128i*)ptr, fVec);} AI SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } AI static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } AI SkNx operator < (const SkNx& o) const { // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. auto flip = _mm_set1_epi8(char(0x80)); return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 16); union { __m128i v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&15]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } __m128i fVec; }; template <> class SkNx<16, uint8_t> { public: AI SkNx(const __m128i& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } AI SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } AI SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } AI static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } AI SkNx operator < (const SkNx& o) const { // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. auto flip = _mm_set1_epi8(char(0x80)); return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 16); union { __m128i v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&15]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } __m128i fVec; }; template<> AI /*static*/ Sk4f SkNx_cast(const Sk4i& src) { return _mm_cvtepi32_ps(src.fVec); } template<> AI /*static*/ Sk4f SkNx_cast(const Sk4u& src) { return SkNx_cast(Sk4i::Load(&src)); } template <> AI /*static*/ Sk4i SkNx_cast(const Sk4f& src) { return _mm_cvttps_epi32(src.fVec); } template<> AI /*static*/ Sk4h SkNx_cast(const Sk4i& src) { #if 0 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 // TODO: This seems to be causing code generation problems. Investigate? return _mm_packus_epi32(src.fVec); #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 // With SSSE3, we can just shuffle the low 2 bytes from each lane right into place. const int _ = ~0; return _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_)); #else // With SSE2, we have to sign extend our input, making _mm_packs_epi32 do the pack we want. __m128i x = _mm_srai_epi32(_mm_slli_epi32(src.fVec, 16), 16); return _mm_packs_epi32(x,x); #endif } template<> AI /*static*/ Sk4h SkNx_cast(const Sk4f& src) { return SkNx_cast(SkNx_cast(src)); } template<> AI /*static*/ Sk4b SkNx_cast(const Sk4f& src) { auto _32 = _mm_cvttps_epi32(src.fVec); #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 const int _ = ~0; return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_)); #else auto _16 = _mm_packus_epi16(_32, _32); return _mm_packus_epi16(_16, _16); #endif } template<> AI /*static*/ Sk4u SkNx_cast(const Sk4b& src) { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 const int _ = ~0; return _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_)); #else auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); return _mm_unpacklo_epi16(_16, _mm_setzero_si128()); #endif } template<> AI /*static*/ Sk4i SkNx_cast(const Sk4b& src) { return SkNx_cast(src).fVec; } template<> AI /*static*/ Sk4f SkNx_cast(const Sk4b& src) { return _mm_cvtepi32_ps(SkNx_cast(src).fVec); } template<> AI /*static*/ Sk4f SkNx_cast(const Sk4h& src) { auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); return _mm_cvtepi32_ps(_32); } template<> AI /*static*/ Sk8b SkNx_cast(const Sk8i& src) { Sk4i lo, hi; SkNx_split(src, &lo, &hi); auto t = _mm_packs_epi32(lo.fVec, hi.fVec); return _mm_packus_epi16(t, t); } template<> AI /*static*/ Sk16b SkNx_cast(const Sk16f& src) { Sk8f ab, cd; SkNx_split(src, &ab, &cd); Sk4f a,b,c,d; SkNx_split(ab, &a, &b); SkNx_split(cd, &c, &d); return _mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec), _mm_cvttps_epi32(b.fVec)), _mm_packus_epi16(_mm_cvttps_epi32(c.fVec), _mm_cvttps_epi32(d.fVec))); } template<> AI /*static*/ Sk4h SkNx_cast(const Sk4b& src) { return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); } template<> AI /*static*/ Sk8h SkNx_cast(const Sk8b& src) { return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); } template<> AI /*static*/ Sk4b SkNx_cast(const Sk4h& src) { return _mm_packus_epi16(src.fVec, src.fVec); } template<> AI /*static*/ Sk8b SkNx_cast(const Sk8h& src) { return _mm_packus_epi16(src.fVec, src.fVec); } template<> AI /*static*/ Sk4i SkNx_cast(const Sk4h& src) { return _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); } template<> AI /*static*/ Sk4b SkNx_cast(const Sk4i& src) { return _mm_packus_epi16(_mm_packus_epi16(src.fVec, src.fVec), src.fVec); } template<> AI /*static*/ Sk4b SkNx_cast(const Sk4u& src) { return _mm_packus_epi16(_mm_packus_epi16(src.fVec, src.fVec), src.fVec); } template<> AI /*static*/ Sk4i SkNx_cast(const Sk4u& src) { return src.fVec; } AI static Sk4i Sk4f_round(const Sk4f& x) { return _mm_cvtps_epi32(x.fVec); } } // namespace #endif//SkNx_sse_DEFINED