/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkColorPriv.h" #include "include/private/SkColorData.h" #include "src/core/SkCpu.h" #include "src/core/SkMSAN.h" #include "src/core/SkVM.h" #include "tests/Test.h" #include "tools/Resources.h" #include "tools/SkVMBuilders.h" using Fmt = SrcoverBuilder_F32::Fmt; const char* fmt_name(Fmt fmt) { switch (fmt) { case Fmt::A8: return "A8"; case Fmt::G8: return "G8"; case Fmt::RGBA_8888: return "RGBA_8888"; } return ""; } static void dump(skvm::Builder& builder, SkWStream* o) { skvm::Program program = builder.done(); builder.dump(o); o->writeText("\n"); program.dump(o); o->writeText("\n"); } // TODO: I'd like this to go away and have every test in here run both JIT and interpreter. template static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) { REPORTER_ASSERT(r, !program.hasJIT()); test((const skvm::Program&) program); } template static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) { static const bool can_jit = []{ // This is about the simplest program we can write, setting an int buffer to a constant. // If this can't JIT, the platform does not support JITing. skvm::Builder b; b.store32(b.varying(), b.splat(42)); skvm::Program p = b.done(); return p.hasJIT(); }(); if (can_jit) { REPORTER_ASSERT(r, program.hasJIT()); test((const skvm::Program&) program); program.dropJIT(); } test_interpreter_only(r, std::move(program), std::move(test)); } DEF_TEST(SkVM, r) { SkDynamicMemoryWStream buf; // Write all combinations of SrcoverBuilder_F32 for (int s = 0; s < 3; s++) for (int d = 0; d < 3; d++) { auto srcFmt = (Fmt)s, dstFmt = (Fmt)d; SrcoverBuilder_F32 builder{srcFmt, dstFmt}; buf.writeText(fmt_name(srcFmt)); buf.writeText(" over "); buf.writeText(fmt_name(dstFmt)); buf.writeText("\n"); dump(builder, &buf); } // Write the I32 Srcovers also. { SrcoverBuilder_I32_Naive builder; buf.writeText("I32 (Naive) 8888 over 8888\n"); dump(builder, &buf); } { SrcoverBuilder_I32 builder; buf.writeText("I32 8888 over 8888\n"); dump(builder, &buf); } { SrcoverBuilder_I32_SWAR builder; buf.writeText("I32 (SWAR) 8888 over 8888\n"); dump(builder, &buf); } { skvm::Builder b; skvm::Arg arg = b.varying(); // x and y can both be hoisted, // and x can die at y, while y must live for the loop. skvm::I32 x = b.splat(1), y = b.add(x, b.splat(2)); b.store32(arg, b.mul(b.load32(arg), y)); skvm::Program program = b.done(); REPORTER_ASSERT(r, program.nregs() == 2); std::vector insts = b.optimize(); REPORTER_ASSERT(r, insts.size() == 6); REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop); REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop); REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop); REPORTER_ASSERT(r, !insts[3].can_hoist); REPORTER_ASSERT(r, !insts[4].can_hoist); REPORTER_ASSERT(r, !insts[5].can_hoist); dump(b, &buf); test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) { int arg[] = {0,1,2,3,4,5,6,7,8,9}; program.eval(SK_ARRAY_COUNT(arg), arg); for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) { REPORTER_ASSERT(r, arg[i] == i*3); } }); } { // Demonstrate the value of program reordering. skvm::Builder b; skvm::Arg sp = b.varying(), dp = b.varying(); skvm::I32 byte = b.splat(0xff); skvm::I32 src = b.load32(sp), sr = b.extract(src, 0, byte), sg = b.extract(src, 8, byte), sb = b.extract(src, 16, byte), sa = b.extract(src, 24, byte); skvm::I32 dst = b.load32(dp), dr = b.extract(dst, 0, byte), dg = b.extract(dst, 8, byte), db = b.extract(dst, 16, byte), da = b.extract(dst, 24, byte); skvm::I32 R = b.add(sr, dr), G = b.add(sg, dg), B = b.add(sb, db), A = b.add(sa, da); skvm::I32 rg = b.pack(R, G, 8), ba = b.pack(B, A, 8), rgba = b.pack(rg, ba, 16); b.store32(dp, rgba); dump(b, &buf); } // Our checked in dump expectations assume we have FMA support. const bool fma_supported = #if defined(SK_CPU_X86) SkCpu::Supports(SkCpu::HSW); #elif defined(SK_CPU_ARM64) true; #else false; #endif if (fma_supported) { sk_sp blob = buf.detachAsData(); { sk_sp expected = GetResourceAsData("SkVMTest.expected"); REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected."); if (expected) { if (blob->size() != expected->size() || 0 != memcmp(blob->data(), expected->data(), blob->size())) { ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n", expected->size(), expected->data(), blob->size(), blob->data()); } SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str()); if (out.isValid()) { out.write(blob->data(), blob->size()); } } } } auto test_8888 = [&](skvm::Program&& program) { uint32_t src[9]; uint32_t dst[SK_ARRAY_COUNT(src)]; test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) { for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) { src[i] = 0xbb007733; dst[i] = 0xffaaccee; } SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73 program.eval((int)SK_ARRAY_COUNT(src), src, dst); // dst is probably 0xff2dad72. for (auto got : dst) { auto want = expected; for (int i = 0; i < 4; i++) { uint8_t d = got & 0xff, w = want & 0xff; if (abs(d-w) >= 2) { SkDebugf("d %02x, w %02x\n", d,w); } REPORTER_ASSERT(r, abs(d-w) < 2); got >>= 8; want >>= 8; } } }); }; test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32")); test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive")); test_8888(SrcoverBuilder_I32{}.done("srcover_i32")); test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR")); test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(), [&](const skvm::Program& program) { uint32_t src[9]; uint8_t dst[SK_ARRAY_COUNT(src)]; for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) { src[i] = 0xbb007733; dst[i] = 0x42; } SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00), 0xff424242); uint8_t want = SkComputeLuminance(SkGetPackedR32(over), SkGetPackedG32(over), SkGetPackedB32(over)); program.eval((int)SK_ARRAY_COUNT(src), src, dst); for (auto got : dst) { REPORTER_ASSERT(r, abs(got-want) < 3); } }); test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(), [&](const skvm::Program& program) { uint8_t src[256], dst[256]; for (int i = 0; i < 256; i++) { src[i] = 255 - i; dst[i] = i; } program.eval(256, src, dst); for (int i = 0; i < 256; i++) { uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0), SkPackARGB32( i, 0,0,0))); REPORTER_ASSERT(r, abs(dst[i]-want) < 2); } }); } DEF_TEST(SkVM_Pointless, r) { // Let's build a program with no memory arguments. // It should all be pegged as dead code, but we should be able to "run" it. skvm::Builder b; { b.add(b.splat(5.0f), b.splat(4.0f)); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { for (int N = 0; N < 64; N++) { program.eval(N); } }); for (const skvm::OptimizedInstruction& inst : b.optimize()) { REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true); } } #if defined(SKVM_LLVM) DEF_TEST(SkVM_LLVM_memset, r) { skvm::Builder b; b.store32(b.varying(), b.splat(42)); skvm::Program p = b.done(); REPORTER_ASSERT(r, p.hasJIT()); int buf[18]; buf[17] = 47; p.eval(17, buf); for (int i = 0; i < 17; i++) { REPORTER_ASSERT(r, buf[i] == 42); } REPORTER_ASSERT(r, buf[17] == 47); } DEF_TEST(SkVM_LLVM_memcpy, r) { skvm::Builder b; { auto src = b.varying(), dst = b.varying(); b.store32(dst, b.load32(src)); } skvm::Program p = b.done(); REPORTER_ASSERT(r, p.hasJIT()); int src[] = {1,2,3,4,5,6,7,8,9}, dst[] = {0,0,0,0,0,0,0,0,0}; p.eval(SK_ARRAY_COUNT(src)-1, src, dst); for (size_t i = 0; i < SK_ARRAY_COUNT(src)-1; i++) { REPORTER_ASSERT(r, dst[i] == src[i]); } size_t i = SK_ARRAY_COUNT(src)-1; REPORTER_ASSERT(r, dst[i] == 0); } #endif DEF_TEST(SkVM_LoopCounts, r) { // Make sure we cover all the exact N we want. // buf[i] += 1 skvm::Builder b; skvm::Arg arg = b.varying(); b.store32(arg, b.add(b.splat(1), b.load32(arg))); test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int buf[64]; for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) { for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { buf[i] = i; } program.eval(N, buf); for (int i = 0; i < N; i++) { REPORTER_ASSERT(r, buf[i] == i+1); } for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] == i); } } }); } DEF_TEST(SkVM_gather32, r) { skvm::Builder b; { skvm::Arg uniforms = b.uniform(), buf = b.varying(); skvm::I32 x = b.load32(buf); b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7)))); } #if defined(SK_CPU_X86) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { const int img[] = {12,34,56,78, 90,98,76,54}; int buf[20]; for (int i = 0; i < 20; i++) { buf[i] = i; } struct Uniforms { const int* img; } uniforms{img}; program.eval(20, &uniforms, buf); int i = 0; REPORTER_ASSERT(r, buf[i] == 12); i++; REPORTER_ASSERT(r, buf[i] == 34); i++; REPORTER_ASSERT(r, buf[i] == 56); i++; REPORTER_ASSERT(r, buf[i] == 78); i++; REPORTER_ASSERT(r, buf[i] == 90); i++; REPORTER_ASSERT(r, buf[i] == 98); i++; REPORTER_ASSERT(r, buf[i] == 76); i++; REPORTER_ASSERT(r, buf[i] == 54); i++; REPORTER_ASSERT(r, buf[i] == 12); i++; REPORTER_ASSERT(r, buf[i] == 34); i++; REPORTER_ASSERT(r, buf[i] == 56); i++; REPORTER_ASSERT(r, buf[i] == 78); i++; REPORTER_ASSERT(r, buf[i] == 90); i++; REPORTER_ASSERT(r, buf[i] == 98); i++; REPORTER_ASSERT(r, buf[i] == 76); i++; REPORTER_ASSERT(r, buf[i] == 54); i++; REPORTER_ASSERT(r, buf[i] == 12); i++; REPORTER_ASSERT(r, buf[i] == 34); i++; REPORTER_ASSERT(r, buf[i] == 56); i++; REPORTER_ASSERT(r, buf[i] == 78); i++; }); } DEF_TEST(SkVM_gathers, r) { skvm::Builder b; { skvm::Arg uniforms = b.uniform(), buf32 = b.varying(), buf16 = b.varying(), buf8 = b.varying(); skvm::I32 x = b.load32(buf32); b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7)))); b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15)))); b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31)))); } #if defined(SKVM_LLVM) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { const int img[] = {12,34,56,78, 90,98,76,54}; constexpr int N = 20; int buf32[N]; uint16_t buf16[N]; uint8_t buf8 [N]; for (int i = 0; i < 20; i++) { buf32[i] = i; } struct Uniforms { const int* img; } uniforms{img}; program.eval(N, &uniforms, buf32, buf16, buf8); int i = 0; REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++; REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++; REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++; REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++; REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++; REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; }); } DEF_TEST(SkVM_bitops, r) { skvm::Builder b; { skvm::Arg ptr = b.varying(); skvm::I32 x = b.load32(ptr); x = b.bit_and (x, b.splat(0xf1)); // 0x40 x = b.bit_or (x, b.splat(0x80)); // 0xc0 x = b.bit_xor (x, b.splat(0xfe)); // 0x3e x = b.bit_clear(x, b.splat(0x30)); // 0x0e x = b.shl(x, 28); // 0xe000'0000 x = b.sra(x, 28); // 0xffff'fffe x = b.shr(x, 1); // 0x7fff'ffff b.store32(ptr, x); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int x = 0x42; program.eval(1, &x); REPORTER_ASSERT(r, x == 0x7fff'ffff); }); } DEF_TEST(SkVM_f32, r) { skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::F32 x = b.loadF(arg), y = b.add(x,x), // y = 2x z = b.sub(y,x), // z = 2x-x = x w = b.div(z,x); // w = x/x = 1 b.storeF(arg, w); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float buf[] = { 1,2,3,4,5,6,7,8,9 }; program.eval(SK_ARRAY_COUNT(buf), buf); for (float v : buf) { REPORTER_ASSERT(r, v == 1.0f); } }); } DEF_TEST(SkVM_cmp_i32, r) { skvm::Builder b; { skvm::I32 x = b.load32(b.varying()); auto to_bit = [&](int shift, skvm::I32 mask) { return b.shl(b.bit_and(mask, b.splat(0x1)), shift); }; skvm::I32 m = b.splat(0); m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0)))); m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1)))); m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2)))); m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3)))); m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4)))); m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5)))); b.store32(b.varying(), m); } #if defined(SKVM_LLVM) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { int in[] = { 0,1,2,3,4,5,6,7,8,9 }; int out[SK_ARRAY_COUNT(in)]; program.eval(SK_ARRAY_COUNT(in), in, out); REPORTER_ASSERT(r, out[0] == 0b001111); REPORTER_ASSERT(r, out[1] == 0b001100); REPORTER_ASSERT(r, out[2] == 0b001010); REPORTER_ASSERT(r, out[3] == 0b001010); REPORTER_ASSERT(r, out[4] == 0b000010); for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { REPORTER_ASSERT(r, out[i] == 0b110010); } }); } DEF_TEST(SkVM_cmp_f32, r) { skvm::Builder b; { skvm::F32 x = b.loadF(b.varying()); auto to_bit = [&](int shift, skvm::I32 mask) { return b.shl(b.bit_and(mask, b.splat(0x1)), shift); }; skvm::I32 m = b.splat(0); m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f)))); m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f)))); m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f)))); m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f)))); m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f)))); m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f)))); b.store32(b.varying(), m); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float in[] = { 0,1,2,3,4,5,6,7,8,9 }; int out[SK_ARRAY_COUNT(in)]; program.eval(SK_ARRAY_COUNT(in), in, out); REPORTER_ASSERT(r, out[0] == 0b001111); REPORTER_ASSERT(r, out[1] == 0b001100); REPORTER_ASSERT(r, out[2] == 0b001010); REPORTER_ASSERT(r, out[3] == 0b001010); REPORTER_ASSERT(r, out[4] == 0b000010); for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { REPORTER_ASSERT(r, out[i] == 0b110010); } }); } DEF_TEST(SkVM_index, r) { skvm::Builder b; b.store32(b.varying(), b.index()); #if defined(SKVM_LLVM) || defined(SK_CPU_X86) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { int buf[23]; program.eval(SK_ARRAY_COUNT(buf), buf); for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] == (int)SK_ARRAY_COUNT(buf)-i); } }); } DEF_TEST(SkVM_i16x2, r) { skvm::Builder b; { skvm::Arg buf = b.varying(); skvm::I32 x = b.load32(buf), y = b.add_16x2(x,x), // y = 2x z = b.mul_16x2(x,y), // z = 2x^2 w = b.sub_16x2(z,x), // w = x(2x-1) v = b.shl_16x2(w,7), // These shifts will be a no-op u = b.sra_16x2(v,7); // for all but x=12 and x=13. b.store32(buf, u); } #if defined(SKVM_LLVM) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 }; program.eval(SK_ARRAY_COUNT(buf)/2, buf); for (int i = 0; i < 12; i++) { REPORTER_ASSERT(r, buf[i] == i*(2*i-1)); } REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114 REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145 }); } DEF_TEST(SkVM_cmp_i16, r) { skvm::Builder b; { skvm::Arg buf = b.varying(); skvm::I32 x = b.load32(buf); auto to_bit = [&](int shift, skvm::I32 mask) { return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift); }; skvm::I32 m = b.splat(0); m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000)))); m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001)))); m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002)))); m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003)))); m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004)))); m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005)))); b.store32(buf, m); } #if defined(SKVM_LLVM) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 }; program.eval(SK_ARRAY_COUNT(buf)/2, buf); REPORTER_ASSERT(r, buf[0] == 0b001111); REPORTER_ASSERT(r, buf[1] == 0b001100); REPORTER_ASSERT(r, buf[2] == 0b001010); REPORTER_ASSERT(r, buf[3] == 0b001010); REPORTER_ASSERT(r, buf[4] == 0b000010); for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] == 0b110010); } }); } DEF_TEST(SkVM_mad, r) { // This program is designed to exercise the tricky corners of instruction // and register selection for Op::mad_f32. skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::F32 x = b.to_f32(b.load32(arg)), y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok. w = b.mad(z,z,y), // w can alias z but not y. v = b.mad(w,y,w); // Got to stop somewhere. b.store32(arg, b.trunc(v)); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int x = 2; program.eval(1, &x); // x = 2 // y = 2*2 + 2 = 6 // z = 6*6 + 2 = 38 // w = 38*38 + 6 = 1450 // v = 1450*6 + 1450 = 10150 REPORTER_ASSERT(r, x == 10150); }); } DEF_TEST(SkVM_fms, r) { // Create a pattern that can be peepholed into an Op::fms_f32. skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::F32 x = b.to_f32(b.load32(arg)), v = b.sub(b.mul(x, b.splat(2.0f)), b.splat(1.0f)); b.store32(arg, b.trunc(v)); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; program.eval((int)SK_ARRAY_COUNT(buf), &buf); for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] = 2*i-1); } }); } DEF_TEST(SkVM_fnma, r) { // Create a pattern that can be peepholed into an Op::fnma_f32. skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::F32 x = b.to_f32(b.load32(arg)), v = b.sub(b.splat(1.0f), b.mul(x, b.splat(2.0f))); b.store32(arg, b.trunc(v)); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; program.eval((int)SK_ARRAY_COUNT(buf), &buf); for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] = 1-2*i); } }); } DEF_TEST(SkVM_madder, r) { skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::F32 x = b.loadF(arg), y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y]. w = b.mad(y,y,z); b.storeF(arg, w); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float x = 2.0f; // y = 2*2 + 2 = 6 // z = 6*2 + 6 = 18 // w = 6*6 + 18 = 54 program.eval(1, &x); REPORTER_ASSERT(r, x == 54.0f); }); } DEF_TEST(SkVM_floor, r) { skvm::Builder b; { skvm::Arg arg = b.varying(); b.storeF(arg, b.floor(b.loadF(arg))); } #if defined(SK_CPU_X86) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f }; float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f }; program.eval(SK_ARRAY_COUNT(buf), buf); for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] == want[i]); } }); } DEF_TEST(SkVM_round, r) { skvm::Builder b; { skvm::Arg src = b.varying(); skvm::Arg dst = b.varying(); b.store32(dst, b.round(b.loadF(src))); } // The test cases on exact 0.5f boundaries assume the current rounding mode is nearest even. // We haven't explicitly guaranteed that here... it just probably is. test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float buf[] = { -1.5f, -0.5f, 0.0f, 0.5f, 0.2f, 0.6f, 1.0f, 1.4f, 1.5f, 2.0f }; int want[] = { -2 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 }; int dst[SK_ARRAY_COUNT(buf)]; program.eval(SK_ARRAY_COUNT(buf), buf, dst); for (int i = 0; i < (int)SK_ARRAY_COUNT(dst); i++) { REPORTER_ASSERT(r, dst[i] == want[i]); } }); } DEF_TEST(SkVM_min, r) { skvm::Builder b; { skvm::Arg src1 = b.varying(); skvm::Arg src2 = b.varying(); skvm::Arg dst = b.varying(); b.storeF(dst, b.min(b.loadF(src1), b.loadF(src2))); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; float want[] = { 0.0f, 1.0f, 3.0f, -1.0f, -2.0f}; float d[SK_ARRAY_COUNT(s1)]; program.eval(SK_ARRAY_COUNT(d), s1, s2, d); for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { REPORTER_ASSERT(r, d[i] == want[i]); } }); } DEF_TEST(SkVM_max, r) { skvm::Builder b; { skvm::Arg src1 = b.varying(); skvm::Arg src2 = b.varying(); skvm::Arg dst = b.varying(); b.storeF(dst, b.max(b.loadF(src1), b.loadF(src2))); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; float want[] = { 0.0f, 2.0f, 4.0f, 1.0f, -1.0f}; float d[SK_ARRAY_COUNT(s1)]; program.eval(SK_ARRAY_COUNT(d), s1, s2, d); for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { REPORTER_ASSERT(r, d[i] == want[i]); } }); } DEF_TEST(SkVM_hoist, r) { // This program uses enough constants that it will fail to JIT if we hoist them. // The JIT will try again without hoisting, and that'll just need 2 registers. skvm::Builder b; { skvm::Arg arg = b.varying(); skvm::I32 x = b.load32(arg); for (int i = 0; i < 32; i++) { x = b.add(x, b.splat(i)); } b.store32(arg, x); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int x = 4; program.eval(1, &x); // x += 0 + 1 + 2 + 3 + ... + 30 + 31 // x += 496 REPORTER_ASSERT(r, x == 500); }); } DEF_TEST(SkVM_select, r) { skvm::Builder b; { skvm::Arg buf = b.varying(); skvm::I32 x = b.load32(buf); x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) ); b.store32(buf, x); } test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int buf[] = { 0,1,2,3,4,5,6,7,8 }; program.eval(SK_ARRAY_COUNT(buf), buf); for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42)); } }); } DEF_TEST(SkVM_NewOps, r) { // Exercise a somewhat arbitrary set of new ops. skvm::Builder b; { skvm::Arg buf = b.varying(), uniforms = b.uniform(); skvm::I32 x = b.load16(buf); const size_t kPtr = sizeof(const int*); x = b.add(x, b.uniform32(uniforms, kPtr+0)); x = b.mul(x, b.uniform8 (uniforms, kPtr+4)); x = b.sub(x, b.uniform16(uniforms, kPtr+6)); skvm::I32 limit = b.uniform32(uniforms, kPtr+8); x = b.select(b.lt(x, b.splat(0)), b.splat(0), x); x = b.select(b.gt(x, limit ), limit , x); x = b.gather8(uniforms,0, x); b.store16(buf, x); } if ((false)) { SkDynamicMemoryWStream buf; dump(b, &buf); sk_sp blob = buf.detachAsData(); SkDebugf("%.*s\n", blob->size(), blob->data()); } #if defined(SKVM_LLVM) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { const int N = 31; int16_t buf[N]; for (int i = 0; i < N; i++) { buf[i] = i; } const int M = 16; uint8_t img[M]; for (int i = 0; i < M; i++) { img[i] = i*i; } struct { const uint8_t* img; int add = 5; uint8_t mul = 3; uint16_t sub = 18; int limit = M-1; } uniforms{img}; program.eval(N, buf, &uniforms); for (int i = 0; i < N; i++) { // Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1). int x = 3*(i-1); // Then that's pinned to the limits of img. if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly... if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly REPORTER_ASSERT(r, buf[i] == img[x]); } }); } DEF_TEST(SkVM_sqrt, r) { skvm::Builder b; auto buf = b.varying(); b.storeF(buf, b.sqrt(b.loadF(buf))); #if defined(SKVM_LLVM) || defined(SK_CPU_X86) test_jit_and_interpreter #else test_interpreter_only #endif (r, b.done(), [&](const skvm::Program& program) { constexpr int K = 17; float buf[K]; for (int i = 0; i < K; i++) { buf[i] = (float)(i*i); } // x^2 -> x program.eval(K, buf); for (int i = 0; i < K; i++) { REPORTER_ASSERT(r, buf[i] == (float)i); } }); } DEF_TEST(SkVM_MSAN, r) { // This little memset32() program should be able to JIT, but if we run that // JIT code in an MSAN build, it won't see the writes initialize buf. So // this tests that we're using the interpreter instead. skvm::Builder b; b.store32(b.varying(), b.splat(42)); test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { constexpr int K = 17; int buf[K]; // Intentionally uninitialized. program.eval(K, buf); sk_msan_assert_initialized(buf, buf+K); for (int x : buf) { REPORTER_ASSERT(r, x == 42); } }); } DEF_TEST(SkVM_assert, r) { skvm::Builder b; b.assert_true(b.lt(b.load32(b.varying()), b.splat(42))); test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { int buf[] = { 0,1,2,3,4,5,6,7,8,9 }; program.eval(SK_ARRAY_COUNT(buf), buf); }); } DEF_TEST(SkVM_premul, reporter) { // Test that premul is short-circuited when alpha is known opaque. { skvm::Builder p; auto rptr = p.varying(), aptr = p.varying(); skvm::F32 r = p.loadF(rptr), g = p.splat(0.0f), b = p.splat(0.0f), a = p.loadF(aptr); p.premul(&r, &g, &b, a); p.storeF(rptr, r); // load red, load alpha, red *= alpha, store red REPORTER_ASSERT(reporter, p.done().instructions().size() == 4); } { skvm::Builder p; auto rptr = p.varying(); skvm::F32 r = p.loadF(rptr), g = p.splat(0.0f), b = p.splat(0.0f), a = p.splat(1.0f); p.premul(&r, &g, &b, a); p.storeF(rptr, r); // load red, store red REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); } // Same deal for unpremul. { skvm::Builder p; auto rptr = p.varying(), aptr = p.varying(); skvm::F32 r = p.loadF(rptr), g = p.splat(0.0f), b = p.splat(0.0f), a = p.loadF(aptr); p.unpremul(&r, &g, &b, a); p.storeF(rptr, r); // load red, load alpha, a bunch of unpremul instructions, store red REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4); } { skvm::Builder p; auto rptr = p.varying(); skvm::F32 r = p.loadF(rptr), g = p.splat(0.0f), b = p.splat(0.0f), a = p.splat(1.0f); p.unpremul(&r, &g, &b, a); p.storeF(rptr, r); // load red, store red REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); } } template static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list expected) { uint8_t buf[4096]; skvm::Assembler a{buf}; fn(a); REPORTER_ASSERT(r, a.size() == expected.size()); auto got = (const uint8_t*)buf, want = expected.begin(); for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) { REPORTER_ASSERT(r, got[i] == want[i], "byte %d was %02x, want %02x", i, got[i], want[i]); } } DEF_TEST(SkVM_Assembler, r) { // Easiest way to generate test cases is // // echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel // // The -x86-asm-syntax=intel bit is optional, controlling the // input syntax only; the output will always be AT&T op x,y,dst style. // Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find // that a bit easier to use here, despite maybe favoring AT&T overall. using A = skvm::Assembler; // Our exit strategy from AVX code. test_asm(r, [&](A& a) { a.int3(); a.vzeroupper(); a.ret(); },{ 0xcc, 0xc5, 0xf8, 0x77, 0xc3, }); // Align should pad with zero test_asm(r, [&](A& a) { a.ret(); a.align(4); },{ 0xc3, 0x00, 0x00, 0x00, }); test_asm(r, [&](A& a) { a.add(A::rax, 8); // Always good to test rax. a.sub(A::rax, 32); a.add(A::rdi, 12); // Last 0x48 REX a.sub(A::rdi, 8); a.add(A::r8 , 7); // First 0x49 REX a.sub(A::r8 , 4); a.add(A::rsi, 128); // Requires 4 byte immediate. a.sub(A::r8 , 1000000); },{ 0x48, 0x83, 0b11'000'000, 0x08, 0x48, 0x83, 0b11'101'000, 0x20, 0x48, 0x83, 0b11'000'111, 0x0c, 0x48, 0x83, 0b11'101'111, 0x08, 0x49, 0x83, 0b11'000'000, 0x07, 0x49, 0x83, 0b11'101'000, 0x04, 0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00, 0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00, }); test_asm(r, [&](A& a) { a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX. a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX. a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX. a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX. a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX. a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right. },{ /* VEX */ /*op*/ /*modRM*/ 0xc5, 0xf5, 0xfe, 0xc2, 0xc5, 0x75, 0xfe, 0xc2, 0xc5, 0xbd, 0xfe, 0xc2, 0xc4, 0xc1, 0x75, 0xfe, 0xc0, 0xc4, 0xe2, 0x75, 0x40, 0xc2, 0xc5, 0xf5, 0xfa, 0xc2, }); test_asm(r, [&](A& a) { a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2); a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2); a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2); a.vcmpltps (A::ymm0, A::ymm1, A::ymm2); a.vcmpleps (A::ymm0, A::ymm1, A::ymm2); a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2); },{ 0xc5,0xf5,0x76,0xc2, 0xc5,0xf5,0x66,0xc2, 0xc5,0xf4,0xc2,0xc2,0x00, 0xc5,0xf4,0xc2,0xc2,0x01, 0xc5,0xf4,0xc2,0xc2,0x02, 0xc5,0xf4,0xc2,0xc2,0x04, }); test_asm(r, [&](A& a) { a.vminps(A::ymm0, A::ymm1, A::ymm2); a.vmaxps(A::ymm0, A::ymm1, A::ymm2); },{ 0xc5,0xf4,0x5d,0xc2, 0xc5,0xf4,0x5f,0xc2, }); test_asm(r, [&](A& a) { a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3); },{ 0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30, }); test_asm(r, [&](A& a) { a.vpsrld(A::ymm15, A::ymm2, 8); a.vpsrld(A::ymm0 , A::ymm8, 5); },{ 0xc5, 0x85, 0x72,0xd2, 0x08, 0xc4,0xc1,0x7d, 0x72,0xd0, 0x05, }); test_asm(r, [&](A& a) { a.vpermq(A::ymm1, A::ymm2, 5); },{ 0xc4,0xe3,0xfd, 0x00,0xca, 0x05, }); test_asm(r, [&](A& a) { a.vroundps(A::ymm1, A::ymm2, A::NEAREST); a.vroundps(A::ymm1, A::ymm2, A::FLOOR); a.vroundps(A::ymm1, A::ymm2, A::CEIL); a.vroundps(A::ymm1, A::ymm2, A::TRUNC); },{ 0xc4,0xe3,0x7d,0x08,0xca,0x00, 0xc4,0xe3,0x7d,0x08,0xca,0x01, 0xc4,0xe3,0x7d,0x08,0xca,0x02, 0xc4,0xe3,0x7d,0x08,0xca,0x03, }); test_asm(r, [&](A& a) { A::Label l = a.here(); a.byte(1); a.byte(2); a.byte(3); a.byte(4); a.vbroadcastss(A::ymm0 , &l); a.vbroadcastss(A::ymm1 , &l); a.vbroadcastss(A::ymm8 , &l); a.vbroadcastss(A::ymm15, &l); a.vpshufb(A::ymm4, A::ymm3, &l); a.vpaddd (A::ymm4, A::ymm3, &l); a.vpsubd (A::ymm4, A::ymm3, &l); a.vptest(A::ymm4, &l); a.vmulps (A::ymm4, A::ymm3, &l); },{ 0x01, 0x02, 0x03, 0x4, /* VEX */ /*op*/ /* ModRM */ /* offset */ 0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13 0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22 0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31 0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40 0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49 0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57 0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65 0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74 0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82 }); test_asm(r, [&](A& a) { a.vbroadcastss(A::ymm0, A::rdi, 0); a.vbroadcastss(A::ymm13, A::r14, 7); a.vbroadcastss(A::ymm8, A::rdx, -12); a.vbroadcastss(A::ymm8, A::rdx, 400); a.vbroadcastss(A::ymm8, A::xmm0); a.vbroadcastss(A::ymm0, A::xmm13); },{ /* VEX */ /*op*/ /*ModRM*/ /*offset*/ 0xc4,0xe2,0x7d, 0x18, 0b00'000'111, 0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07, 0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4, 0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00, 0xc4,0x62,0x7d, 0x18, 0b11'000'000, 0xc4,0xc2,0x7d, 0x18, 0b11'000'101, }); test_asm(r, [&](A& a) { A::Label l = a.here(); a.jne(&l); a.jne(&l); a.je (&l); a.jmp(&l); a.jl (&l); a.jc (&l); a.cmp(A::rdx, 0); a.cmp(A::rax, 12); a.cmp(A::r14, 2000000000); },{ 0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes 0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes 0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes 0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes 0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes 0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes 0x48,0x83,0xfa,0x00, 0x48,0x83,0xf8,0x0c, 0x49,0x81,0xfe,0x00,0x94,0x35,0x77, }); test_asm(r, [&](A& a) { a.vmovups(A::ymm5, A::rsi); a.vmovups(A::rsi, A::ymm5); a.vmovups(A::rsi, A::xmm5); a.vpmovzxwd(A::ymm4, A::rsi); a.vpmovzxbd(A::ymm4, A::rsi); a.vmovq(A::rdx, A::xmm15); },{ /* VEX */ /*Op*/ /* ModRM */ 0xc5, 0xfc, 0x10, 0b00'101'110, 0xc5, 0xfc, 0x11, 0b00'101'110, 0xc5, 0xf8, 0x11, 0b00'101'110, 0xc4,0xe2,0x7d, 0x33, 0b00'100'110, 0xc4,0xe2,0x7d, 0x31, 0b00'100'110, 0xc5, 0x79, 0xd6, 0b00'111'010, }); test_asm(r, [&](A& a) { a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst. a.movzbl(A::rax, A::r8, 0); // High src register. a.movzbl(A::r8 , A::rsi, 0); // High dst register. a.movzbl(A::r8, A::rsi, 12); a.movzbl(A::r8, A::rsi, 400); a.vmovd(A::rax, A::xmm0); a.vmovd(A::rax, A::xmm8); a.vmovd(A::r8, A::xmm0); a.vmovd(A::xmm0, A::rax); a.vmovd(A::xmm8, A::rax); a.vmovd(A::xmm0, A::r8); a.vmovd(A::xmm0 , A::FOUR, A::rcx, A::rax); a.vmovd(A::xmm15, A::TWO, A::r8, A::rax); a.vmovd(A::xmm0 , A::ONE, A::rcx, A::r8); a.vmovd_direct(A::rax, A::xmm0); a.vmovd_direct(A::rax, A::xmm8); a.vmovd_direct(A::r8, A::xmm0); a.vmovd_direct(A::xmm0, A::rax); a.vmovd_direct(A::xmm8, A::rax); a.vmovd_direct(A::xmm0, A::r8); a.movb(A::rdx, A::rax); a.movb(A::rdx, A::r8); a.movb(A::r8 , A::rax); },{ 0x0f,0xb6,0x06, 0x41,0x0f,0xb6,0x00, 0x44,0x0f,0xb6,0x06, 0x44,0x0f,0xb6,0x46, 12, 0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00, 0xc5,0xf9,0x7e,0x00, 0xc5,0x79,0x7e,0x00, 0xc4,0xc1,0x79,0x7e,0x00, 0xc5,0xf9,0x6e,0x00, 0xc5,0x79,0x6e,0x00, 0xc4,0xc1,0x79,0x6e,0x00, 0xc5,0xf9,0x6e,0x04,0x88, 0xc4,0x21,0x79,0x6e,0x3c,0x40, 0xc4,0xc1,0x79,0x6e,0x04,0x08, 0xc5,0xf9,0x7e,0xc0, 0xc5,0x79,0x7e,0xc0, 0xc4,0xc1,0x79,0x7e,0xc0, 0xc5,0xf9,0x6e,0xc0, 0xc5,0x79,0x6e,0xc0, 0xc4,0xc1,0x79,0x6e,0xc0, 0x88, 0x02, 0x44, 0x88, 0x02, 0x41, 0x88, 0x00, }); test_asm(r, [&](A& a) { a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4); a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12); a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4); a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12); a.vpextrw(A::rsi, A::xmm8, 7); a.vpextrw(A::r8, A::xmm1, 15); a.vpextrb(A::rsi, A::xmm8, 7); a.vpextrb(A::r8, A::xmm1, 15); },{ 0xc5,0xb9, 0xc4, 0x0e, 4, 0xc4,0x41,0x71, 0xc4, 0x00, 12, 0xc4,0xe3,0x39, 0x20, 0x0e, 4, 0xc4,0x43,0x71, 0x20, 0x00, 12, 0xc4,0x63,0x79, 0x15, 0x06, 7, 0xc4,0xc3,0x79, 0x15, 0x08, 15, 0xc4,0x63,0x79, 0x14, 0x06, 7, 0xc4,0xc3,0x79, 0x14, 0x08, 15, }); test_asm(r, [&](A& a) { a.vpandn(A::ymm3, A::ymm12, A::ymm2); },{ 0xc5, 0x9d, 0xdf, 0xda, }); test_asm(r, [&](A& a) { a.vmovdqa (A::ymm3, A::ymm2); a.vcvttps2dq(A::ymm3, A::ymm2); a.vcvtdq2ps (A::ymm3, A::ymm2); a.vcvtps2dq (A::ymm3, A::ymm2); a.vsqrtps (A::ymm3, A::ymm2); },{ 0xc5,0xfd,0x6f,0xda, 0xc5,0xfe,0x5b,0xda, 0xc5,0xfc,0x5b,0xda, 0xc5,0xfd,0x5b,0xda, 0xc5,0xfc,0x51,0xda, }); test_asm(r, [&](A& a) { a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 ); a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 ); a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 ); a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 ); a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 ); a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12); a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12); },{ 0xc4,0xe2,0x6d,0x92,0x0c,0x87, 0xc4,0xe2,0x75,0x92,0x04,0x10, 0xc4,0x62,0x75,0x92,0x14,0x10, 0xc4,0xa2,0x75,0x92,0x04,0x20, 0xc4,0xc2,0x75,0x92,0x04,0x11, 0xc4,0xe2,0x1d,0x92,0x04,0x10, 0xc4,0xe2,0x1d,0x92,0x04,0xd0, }); test_asm(r, [&](A& a) { a.movq(A::rax, A::rdi, 0); a.movq(A::rax, A::rdi, 1); a.movq(A::rax, A::rdi, 512); a.movq(A::r15, A::r13, 42); a.movq(A::rax, A::r13, 42); a.movq(A::r15, A::rax, 42); },{ 0x48, 0x8b, 0x07, 0x48, 0x8b, 0x47, 0x01, 0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00, 0x4d, 0x8b, 0x7d, 0x2a, 0x49, 0x8b, 0x45, 0x2a, 0x4c, 0x8b, 0x78, 0x2a, }); // echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64 test_asm(r, [&](A& a) { a.and16b(A::v4, A::v3, A::v1); a.orr16b(A::v4, A::v3, A::v1); a.eor16b(A::v4, A::v3, A::v1); a.bic16b(A::v4, A::v3, A::v1); a.bsl16b(A::v4, A::v3, A::v1); a.not16b(A::v4, A::v3); a.add4s(A::v4, A::v3, A::v1); a.sub4s(A::v4, A::v3, A::v1); a.mul4s(A::v4, A::v3, A::v1); a.cmeq4s(A::v4, A::v3, A::v1); a.cmgt4s(A::v4, A::v3, A::v1); a.sub8h(A::v4, A::v3, A::v1); a.mul8h(A::v4, A::v3, A::v1); a.fadd4s(A::v4, A::v3, A::v1); a.fsub4s(A::v4, A::v3, A::v1); a.fmul4s(A::v4, A::v3, A::v1); a.fdiv4s(A::v4, A::v3, A::v1); a.fmin4s(A::v4, A::v3, A::v1); a.fmax4s(A::v4, A::v3, A::v1); a.fneg4s(A::v4, A::v3); a.fmla4s(A::v4, A::v3, A::v1); a.fmls4s(A::v4, A::v3, A::v1); a.fcmeq4s(A::v4, A::v3, A::v1); a.fcmgt4s(A::v4, A::v3, A::v1); a.fcmge4s(A::v4, A::v3, A::v1); },{ 0x64,0x1c,0x21,0x4e, 0x64,0x1c,0xa1,0x4e, 0x64,0x1c,0x21,0x6e, 0x64,0x1c,0x61,0x4e, 0x64,0x1c,0x61,0x6e, 0x64,0x58,0x20,0x6e, 0x64,0x84,0xa1,0x4e, 0x64,0x84,0xa1,0x6e, 0x64,0x9c,0xa1,0x4e, 0x64,0x8c,0xa1,0x6e, 0x64,0x34,0xa1,0x4e, 0x64,0x84,0x61,0x6e, 0x64,0x9c,0x61,0x4e, 0x64,0xd4,0x21,0x4e, 0x64,0xd4,0xa1,0x4e, 0x64,0xdc,0x21,0x6e, 0x64,0xfc,0x21,0x6e, 0x64,0xf4,0xa1,0x4e, 0x64,0xf4,0x21,0x4e, 0x64,0xf8,0xa0,0x6e, 0x64,0xcc,0x21,0x4e, 0x64,0xcc,0xa1,0x4e, 0x64,0xe4,0x21,0x4e, 0x64,0xe4,0xa1,0x6e, 0x64,0xe4,0x21,0x6e, }); test_asm(r, [&](A& a) { a.shl4s(A::v4, A::v3, 0); a.shl4s(A::v4, A::v3, 1); a.shl4s(A::v4, A::v3, 8); a.shl4s(A::v4, A::v3, 16); a.shl4s(A::v4, A::v3, 31); a.sshr4s(A::v4, A::v3, 1); a.sshr4s(A::v4, A::v3, 8); a.sshr4s(A::v4, A::v3, 31); a.ushr4s(A::v4, A::v3, 1); a.ushr4s(A::v4, A::v3, 8); a.ushr4s(A::v4, A::v3, 31); a.ushr8h(A::v4, A::v3, 1); a.ushr8h(A::v4, A::v3, 8); a.ushr8h(A::v4, A::v3, 15); },{ 0x64,0x54,0x20,0x4f, 0x64,0x54,0x21,0x4f, 0x64,0x54,0x28,0x4f, 0x64,0x54,0x30,0x4f, 0x64,0x54,0x3f,0x4f, 0x64,0x04,0x3f,0x4f, 0x64,0x04,0x38,0x4f, 0x64,0x04,0x21,0x4f, 0x64,0x04,0x3f,0x6f, 0x64,0x04,0x38,0x6f, 0x64,0x04,0x21,0x6f, 0x64,0x04,0x1f,0x6f, 0x64,0x04,0x18,0x6f, 0x64,0x04,0x11,0x6f, }); test_asm(r, [&](A& a) { a.sli4s(A::v4, A::v3, 0); a.sli4s(A::v4, A::v3, 1); a.sli4s(A::v4, A::v3, 8); a.sli4s(A::v4, A::v3, 16); a.sli4s(A::v4, A::v3, 31); },{ 0x64,0x54,0x20,0x6f, 0x64,0x54,0x21,0x6f, 0x64,0x54,0x28,0x6f, 0x64,0x54,0x30,0x6f, 0x64,0x54,0x3f,0x6f, }); test_asm(r, [&](A& a) { a.scvtf4s (A::v4, A::v3); a.fcvtzs4s(A::v4, A::v3); a.fcvtns4s(A::v4, A::v3); },{ 0x64,0xd8,0x21,0x4e, 0x64,0xb8,0xa1,0x4e, 0x64,0xa8,0x21,0x4e, }); test_asm(r, [&](A& a) { a.brk(0); a.brk(65535); a.ret(A::x30); // Conventional ret using link register. a.ret(A::x13); // Can really return using any register if we like. a.add(A::x2, A::x2, 4); a.add(A::x3, A::x2, 32); a.sub(A::x2, A::x2, 4); a.sub(A::x3, A::x2, 32); a.subs(A::x2, A::x2, 4); a.subs(A::x3, A::x2, 32); a.subs(A::xzr, A::x2, 4); // These are actually the same instruction! a.cmp(A::x2, 4); A::Label l = a.here(); a.bne(&l); a.bne(&l); a.blt(&l); a.b(&l); a.cbnz(A::x2, &l); a.cbz(A::x2, &l); },{ 0x00,0x00,0x20,0xd4, 0xe0,0xff,0x3f,0xd4, 0xc0,0x03,0x5f,0xd6, 0xa0,0x01,0x5f,0xd6, 0x42,0x10,0x00,0x91, 0x43,0x80,0x00,0x91, 0x42,0x10,0x00,0xd1, 0x43,0x80,0x00,0xd1, 0x42,0x10,0x00,0xf1, 0x43,0x80,0x00,0xf1, 0x5f,0x10,0x00,0xf1, 0x5f,0x10,0x00,0xf1, 0x01,0x00,0x00,0x54, // b.ne #0 0xe1,0xff,0xff,0x54, // b.ne #-4 0xcb,0xff,0xff,0x54, // b.lt #-8 0xae,0xff,0xff,0x54, // b.al #-12 0x82,0xff,0xff,0xb5, // cbnz x2, #-16 0x62,0xff,0xff,0xb4, // cbz x2, #-20 }); // Can we cbz() to a not-yet-defined label? test_asm(r, [&](A& a) { A::Label l; a.cbz(A::x2, &l); a.add(A::x3, A::x2, 32); a.label(&l); a.ret(A::x30); },{ 0x42,0x00,0x00,0xb4, // cbz x2, #8 0x43,0x80,0x00,0x91, // add x3, x2, #32 0xc0,0x03,0x5f,0xd6, // ret }); // If we start a label as a backward label, // can we redefine it to be a future label? // (Not sure this is useful... just want to test it works.) test_asm(r, [&](A& a) { A::Label l1 = a.here(); a.add(A::x3, A::x2, 32); a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky. A::Label l2 = a.here(); // Start off the same... a.add(A::x3, A::x2, 32); a.cbz(A::x2, &l2); // Looks like this will go backward... a.add(A::x2, A::x2, 4); a.add(A::x3, A::x2, 32); a.label(&l2); // But no... actually forward! What a switcheroo! },{ 0x43,0x80,0x00,0x91, // add x3, x2, #32 0xe2,0xff,0xff,0xb4, // cbz x2, #-4 0x43,0x80,0x00,0x91, // add x3, x2, #32 0x62,0x00,0x00,0xb4, // cbz x2, #12 0x42,0x10,0x00,0x91, // add x2, x2, #4 0x43,0x80,0x00,0x91, // add x3, x2, #32 }); // Loading from a label on ARM. test_asm(r, [&](A& a) { A::Label fore,aft; a.label(&fore); a.word(0x01234567); a.ldrq(A::v1, &fore); a.ldrq(A::v2, &aft); a.label(&aft); a.word(0x76543210); },{ 0x67,0x45,0x23,0x01, 0xe1,0xff,0xff,0x9c, // ldr q1, #-4 0x22,0x00,0x00,0x9c, // ldr q2, #4 0x10,0x32,0x54,0x76, }); test_asm(r, [&](A& a) { a.ldrq(A::v0, A::x8); a.strq(A::v0, A::x8); },{ 0x00,0x01,0xc0,0x3d, 0x00,0x01,0x80,0x3d, }); test_asm(r, [&](A& a) { a.xtns2h(A::v0, A::v0); a.xtnh2b(A::v0, A::v0); a.strs (A::v0, A::x0); a.ldrs (A::v0, A::x0); a.uxtlb2h(A::v0, A::v0); a.uxtlh2s(A::v0, A::v0); a.uminv4s(A::v3, A::v4); a.fmovs (A::x3, A::v4); // fmov w3,s4 },{ 0x00,0x28,0x61,0x0e, 0x00,0x28,0x21,0x0e, 0x00,0x00,0x00,0xbd, 0x00,0x00,0x40,0xbd, 0x00,0xa4,0x08,0x2f, 0x00,0xa4,0x10,0x2f, 0x83,0xa8,0xb1,0x6e, 0x83,0x00,0x26,0x1e, }); test_asm(r, [&](A& a) { a.ldrb(A::v0, A::x8); a.strb(A::v0, A::x8); },{ 0x00,0x01,0x40,0x3d, 0x00,0x01,0x00,0x3d, }); test_asm(r, [&](A& a) { a.tbl(A::v0, A::v1, A::v2); },{ 0x20,0x00,0x02,0x4e, }); } DEF_TEST(SkVM_approx_math, r) { auto eval = [](int N, float values[], auto fn) { skvm::Builder b; skvm::Arg inout = b.varying(); b.storeF(inout, fn(&b, b.loadF(inout))); b.done().eval(N, values); }; auto compare = [r](int N, const float values[], const float expected[]) { for (int i = 0; i < N; ++i) { REPORTER_ASSERT(r, SkScalarNearlyEqual(values[i], expected[i], 0.001f)); } }; // log2 { float values[] = {0.25f, 0.5f, 1, 2, 4, 8}; constexpr int N = SK_ARRAY_COUNT(values); eval(N, values, [](skvm::Builder* b, skvm::F32 v) { return b->approx_log2(v); }); const float expected[] = {-2, -1, 0, 1, 2, 3}; compare(N, values, expected); } // pow2 { float values[] = {-2, -1, 0, 1, 2, 3}; constexpr int N = SK_ARRAY_COUNT(values); eval(N, values, [](skvm::Builder* b, skvm::F32 v) { return b->approx_pow2(v); }); const float expected[] = {0.25f, 0.5f, 1, 2, 4, 8}; compare(N, values, expected); } // powf -- x^0.5 { float bases[] = {0, 1, 4, 9, 16}; constexpr int N = SK_ARRAY_COUNT(bases); eval(N, bases, [](skvm::Builder* b, skvm::F32 base) { return b->approx_powf(base, b->splat(0.5f)); }); const float expected[] = {0, 1, 2, 3, 4}; compare(N, bases, expected); } // powf -- 3^x { float exps[] = {-2, -1, 0, 1, 2}; constexpr int N = SK_ARRAY_COUNT(exps); eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) { return b->approx_powf(b->splat(3.0f), exp); }); const float expected[] = {1/9.0f, 1/3.0f, 1, 3, 9}; compare(N, exps, expected); } }