/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #if SK_SUPPORT_GPU #include "GrContextPriv.h" #include "GrMemoryPool.h" #include "GrPathUtils.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "Sample.h" #include "SkCanvas.h" #include "SkPaint.h" #include "SkPath.h" #include "SkRectPriv.h" #include "ccpr/GrCCCoverageProcessor.h" #include "ccpr/GrCCFillGeometry.h" #include "ccpr/GrCCStroker.h" #include "gl/GrGLGpu.cpp" #include "glsl/GrGLSLFragmentProcessor.h" #include "ops/GrDrawOp.h" using TriPointInstance = GrCCCoverageProcessor::TriPointInstance; using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance; using PrimitiveType = GrCCCoverageProcessor::PrimitiveType; static constexpr float kDebugBloat = 40; /** * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green, * coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different * geometry processors. */ class CCPRGeometryView : public Sample { public: CCPRGeometryView() { this->updateGpuData(); } void onDrawContent(SkCanvas*) override; Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override; bool onClick(Sample::Click*) override; bool onQuery(Sample::Event* evt) override; private: class Click; class DrawCoverageCountOp; class VisualizeCoverageCountFP; void updateAndInval() { this->updateGpuData(); } void updateGpuData(); PrimitiveType fPrimitiveType = PrimitiveType::kTriangles; SkCubicType fCubicType; SkMatrix fCubicKLM; SkPoint fPoints[4] = { {100.05f, 100.05f}, {400.75f, 100.05f}, {400.75f, 300.95f}, {100.05f, 300.95f}}; float fConicWeight = .5; float fStrokeWidth = 40; bool fDoStroke = false; SkTArray fTriPointInstances; SkTArray fQuadPointInstances; SkPath fPath; typedef Sample INHERITED; }; class CCPRGeometryView::DrawCoverageCountOp : public GrDrawOp { DEFINE_OP_CLASS_ID public: DrawCoverageCountOp(CCPRGeometryView* view) : INHERITED(ClassID()), fView(view) { this->setBounds(SkRect::MakeIWH(fView->width(), fView->height()), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo); } const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::DrawCoverageCountOp"; } private: FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*) override { return RequiresDstTexture::kNo; } void onPrepare(GrOpFlushState*) override {} void onExecute(GrOpFlushState*, const SkRect& chainBounds) override; CCPRGeometryView* fView; typedef GrDrawOp INHERITED; }; class CCPRGeometryView::VisualizeCoverageCountFP : public GrFragmentProcessor { public: VisualizeCoverageCountFP() : GrFragmentProcessor(kTestFP_ClassID, kNone_OptimizationFlags) {} private: const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::VisualizeCoverageCountFP"; } std::unique_ptr clone() const override { return skstd::make_unique(); } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {} bool onIsEqual(const GrFragmentProcessor&) const override { return true; } class Impl : public GrGLSLFragmentProcessor { void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* f = args.fFragBuilder; f->codeAppendf("half count = %s.a;", args.fInputColor); f->codeAppendf("%s = half4(clamp(-count, 0, 1), clamp(+count, 0, 1), 0, abs(count));", args.fOutputColor); } }; GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new Impl; } }; static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) { SkPoint p1, p2; if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) { // Draw from vertical edge to vertical edge. p1 = {0, -line[2] / line[1]}; p2 = {(SkScalar)w, (-line[2] - w * line[0]) / line[1]}; } else { // Draw from horizontal edge to horizontal edge. p1 = {-line[2] / line[0], 0}; p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar)h}; } SkPaint linePaint; linePaint.setColor(color); linePaint.setAlpha(128); linePaint.setStyle(SkPaint::kStroke_Style); linePaint.setStrokeWidth(0); linePaint.setAntiAlias(true); canvas->drawLine(p1, p2, linePaint); } void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { canvas->clear(SK_ColorBLACK); if (!fDoStroke) { SkPaint outlinePaint; outlinePaint.setColor(0x80ffffff); outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStrokeWidth(0); outlinePaint.setAntiAlias(true); canvas->drawPath(fPath, outlinePaint); } #if 0 SkPaint gridPaint; gridPaint.setColor(0x10000000); gridPaint.setStyle(SkPaint::kStroke_Style); gridPaint.setStrokeWidth(0); gridPaint.setAntiAlias(true); for (int y = 0; y < this->height(); y += kDebugBloat) { canvas->drawLine(0, y, this->width(), y, gridPaint); } for (int x = 0; x < this->width(); x += kDebugBloat) { canvas->drawLine(x, 0, x, this->height(), outlinePaint); } #endif SkString caption; if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) { // Render coverage count. GrContext* ctx = canvas->getGrContext(); SkASSERT(ctx); GrOpMemoryPool* pool = ctx->contextPriv().opMemoryPool(); sk_sp ccbuff = ctx->contextPriv().makeDeferredRenderTargetContext(SkBackingFit::kApprox, this->width(), this->height(), kAlpha_half_GrPixelConfig, nullptr); SkASSERT(ccbuff); ccbuff->clear(nullptr, SK_PMColor4fTRANSPARENT, GrRenderTargetContext::CanClearFullscreen::kYes); ccbuff->priv().testingOnly_addDrawOp(pool->allocate(this)); // Visualize coverage count in main canvas. GrPaint paint; paint.addColorFragmentProcessor( GrSimpleTextureEffect::Make(sk_ref_sp(ccbuff->asTextureProxy()), SkMatrix::I())); paint.addColorFragmentProcessor( skstd::make_unique()); paint.setPorterDuffXPFactory(SkBlendMode::kSrcOver); rtc->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), SkRect::MakeIWH(this->width(), this->height())); // Add label. caption.appendf("PrimitiveType_%s", GrCCCoverageProcessor::PrimitiveTypeName(fPrimitiveType)); if (PrimitiveType::kCubics == fPrimitiveType) { caption.appendf(" (%s)", SkCubicTypeName(fCubicType)); } else if (PrimitiveType::kConics == fPrimitiveType) { caption.appendf(" (w=%f)", fConicWeight); } if (fDoStroke) { caption.appendf(" (stroke_width=%f)", fStrokeWidth); } } else { caption = "Use GPU backend to visualize geometry."; } SkPaint pointsPaint; pointsPaint.setColor(SK_ColorBLUE); pointsPaint.setStrokeWidth(8); pointsPaint.setAntiAlias(true); if (PrimitiveType::kCubics == fPrimitiveType) { canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint); if (!fDoStroke) { int w = this->width(), h = this->height(); draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW); draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE); draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED); } } else { canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint); canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint); } SkPaint captionPaint; captionPaint.setTextSize(20); captionPaint.setColor(SK_ColorWHITE); captionPaint.setAntiAlias(true); canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint); } void CCPRGeometryView::updateGpuData() { using Verb = GrCCFillGeometry::Verb; fTriPointInstances.reset(); fQuadPointInstances.reset(); fPath.reset(); fPath.moveTo(fPoints[0]); if (PrimitiveType::kCubics == fPrimitiveType) { double t[2], s[2]; fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s); GrCCFillGeometry geometry; geometry.beginContour(fPoints[0]); geometry.cubicTo(fPoints, kDebugBloat / 2, kDebugBloat / 2); geometry.endContour(); int ptsIdx = 0; for (Verb verb : geometry.verbs()) { switch (verb) { case Verb::kLineTo: ++ptsIdx; continue; case Verb::kMonotonicQuadraticTo: ptsIdx += 2; continue; case Verb::kMonotonicCubicTo: fQuadPointInstances.push_back().set(&geometry.points()[ptsIdx], 0, 0); ptsIdx += 3; continue; default: continue; } } fPath.cubicTo(fPoints[1], fPoints[2], fPoints[3]); } else if (PrimitiveType::kTriangles != fPrimitiveType) { SkPoint P3[3] = {fPoints[0], fPoints[1], fPoints[3]}; GrCCFillGeometry geometry; geometry.beginContour(P3[0]); if (PrimitiveType::kQuadratics == fPrimitiveType) { geometry.quadraticTo(P3); fPath.quadTo(fPoints[1], fPoints[3]); } else { SkASSERT(PrimitiveType::kConics == fPrimitiveType); geometry.conicTo(P3, fConicWeight); fPath.conicTo(fPoints[1], fPoints[3], fConicWeight); } geometry.endContour(); int ptsIdx = 0, conicWeightIdx = 0; for (Verb verb : geometry.verbs()) { if (Verb::kBeginContour == verb || Verb::kEndOpenContour == verb || Verb::kEndClosedContour == verb) { continue; } if (Verb::kLineTo == verb) { ++ptsIdx; continue; } SkASSERT(Verb::kMonotonicQuadraticTo == verb || Verb::kMonotonicConicTo == verb); if (PrimitiveType::kQuadratics == fPrimitiveType && Verb::kMonotonicQuadraticTo == verb) { fTriPointInstances.push_back().set(&geometry.points()[ptsIdx], Sk2f(0, 0)); } else if (PrimitiveType::kConics == fPrimitiveType && Verb::kMonotonicConicTo == verb) { fQuadPointInstances.push_back().setW(&geometry.points()[ptsIdx], Sk2f(0, 0), geometry.getConicWeight(conicWeightIdx++)); } ptsIdx += 2; } } else { fTriPointInstances.push_back().set(fPoints[0], fPoints[1], fPoints[3], Sk2f(0, 0)); fPath.lineTo(fPoints[1]); fPath.lineTo(fPoints[3]); fPath.close(); } } void CCPRGeometryView::DrawCoverageCountOp::onExecute(GrOpFlushState* state, const SkRect& chainBounds) { GrResourceProvider* rp = state->resourceProvider(); GrContext* context = state->gpu()->getContext(); GrGLGpu* glGpu = GrBackendApi::kOpenGL == context->contextPriv().getBackend() ? static_cast(state->gpu()) : nullptr; if (glGpu) { glGpu->handleDirtyContext(); // GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH)); } GrPipeline pipeline(state->drawOpArgs().fProxy, GrScissorTest::kDisabled, SkBlendMode::kPlus); if (!fView->fDoStroke) { GrCCCoverageProcessor proc(rp, fView->fPrimitiveType); SkDEBUGCODE(proc.enableDebugBloat(kDebugBloat)); SkSTArray<1, GrMesh> mesh; if (PrimitiveType::kCubics == fView->fPrimitiveType || PrimitiveType::kConics == fView->fPrimitiveType) { sk_sp instBuff(rp->createBuffer( fView->fQuadPointInstances.count() * sizeof(QuadPointInstance), kVertex_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::Flags::kNoPendingIO | GrResourceProvider::Flags::kRequireGpuMemory, fView->fQuadPointInstances.begin())); if (!fView->fQuadPointInstances.empty() && instBuff) { proc.appendMesh(instBuff.get(), fView->fQuadPointInstances.count(), 0, &mesh); } } else { sk_sp instBuff(rp->createBuffer( fView->fTriPointInstances.count() * sizeof(TriPointInstance), kVertex_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::Flags::kNoPendingIO | GrResourceProvider::Flags::kRequireGpuMemory, fView->fTriPointInstances.begin())); if (!fView->fTriPointInstances.empty() && instBuff) { proc.appendMesh(instBuff.get(), fView->fTriPointInstances.count(), 0, &mesh); } } if (!mesh.empty()) { SkASSERT(1 == mesh.count()); proc.draw(state, pipeline, nullptr, mesh.begin(), 1, this->bounds()); } } else if (PrimitiveType::kConics != fView->fPrimitiveType) { // No conic stroke support yet. GrCCStroker stroker(0,0,0); SkPaint p; p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(fView->fStrokeWidth); p.setStrokeJoin(SkPaint::kMiter_Join); p.setStrokeMiter(4); // p.setStrokeCap(SkPaint::kRound_Cap); stroker.parseDeviceSpaceStroke(fView->fPath, SkPathPriv::PointData(fView->fPath), SkStrokeRec(p), p.getStrokeWidth(), GrScissorTest::kDisabled, SkIRect::MakeWH(fView->width(), fView->height()), {0, 0}); GrCCStroker::BatchID batchID = stroker.closeCurrentBatch(); GrOnFlushResourceProvider onFlushRP(context->contextPriv().drawingManager()); stroker.prepareToDraw(&onFlushRP); SkIRect ibounds; this->bounds().roundOut(&ibounds); stroker.drawStrokes(state, batchID, ibounds); } if (glGpu) { context->resetContext(kMisc_GrGLBackendState); } } class CCPRGeometryView::Click : public Sample::Click { public: Click(Sample* target, int ptIdx) : Sample::Click(target), fPtIdx(ptIdx) {} void doClick(SkPoint points[]) { if (fPtIdx >= 0) { this->dragPoint(points, fPtIdx); } else { for (int i = 0; i < 4; ++i) { this->dragPoint(points, i); } } } private: void dragPoint(SkPoint points[], int idx) { SkIPoint delta = fICurr - fIPrev; points[idx] += SkPoint::Make(delta.x(), delta.y()); } int fPtIdx; }; Sample::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) { for (int i = 0; i < 4; ++i) { if (PrimitiveType::kCubics != fPrimitiveType && 2 == i) { continue; } if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) { return new Click(this, i); } } return new Click(this, -1); } bool CCPRGeometryView::onClick(Sample::Click* click) { Click* myClick = (Click*)click; myClick->doClick(fPoints); this->updateAndInval(); return true; } bool CCPRGeometryView::onQuery(Sample::Event* evt) { if (Sample::TitleQ(*evt)) { Sample::TitleR(evt, "CCPRGeometry"); return true; } SkUnichar unichar; if (Sample::CharQ(*evt, &unichar)) { if (unichar >= '1' && unichar <= '4') { fPrimitiveType = PrimitiveType(unichar - '1'); if (fPrimitiveType >= PrimitiveType::kWeightedTriangles) { fPrimitiveType = (PrimitiveType) ((int)fPrimitiveType + 1); } this->updateAndInval(); return true; } float* valueToScale = nullptr; if (fDoStroke) { valueToScale = &fStrokeWidth; } else if (PrimitiveType::kConics == fPrimitiveType) { valueToScale = &fConicWeight; } if (valueToScale) { if (unichar == '+') { *valueToScale *= 2; this->updateAndInval(); return true; } if (unichar == '+' || unichar == '=') { *valueToScale *= 5/4.f; this->updateAndInval(); return true; } if (unichar == '-') { *valueToScale *= 4/5.f; this->updateAndInval(); return true; } if (unichar == '_') { *valueToScale *= .5f; this->updateAndInval(); return true; } } if (unichar == 'D') { SkDebugf(" SkPoint fPoints[4] = {\n"); SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y()); SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y()); SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y()); SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y()); SkDebugf(" };\n"); return true; } if (unichar == 'S') { fDoStroke = !fDoStroke; this->updateAndInval(); } } return this->INHERITED::onQuery(evt); } DEF_SAMPLE(return new CCPRGeometryView;) #endif // SK_SUPPORT_GPU