/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/BigPath.h" #include "include/core/SkCanvas.h" #include "include/core/SkDeferredDisplayList.h" #include "include/core/SkGraphics.h" #include "include/core/SkPicture.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceProps.h" #include "include/effects/SkPerlinNoiseShader.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkOSFile.h" #include "src/core/SkTaskGroup.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/SkGr.h" #include "src/utils/SkMultiPictureDocument.h" #include "src/utils/SkOSPath.h" #include "tools/DDLPromiseImageHelper.h" #include "tools/DDLTileHelper.h" #include "tools/SkSharingProc.h" #include "tools/ToolUtils.h" #include "tools/flags/CommandLineFlags.h" #include "tools/flags/CommonFlags.h" #include "tools/flags/CommonFlagsConfig.h" #include "tools/gpu/FlushFinishTracker.h" #include "tools/gpu/GpuTimer.h" #include "tools/gpu/GrContextFactory.h" #if defined(SK_ENABLE_SVG) #include "modules/svg/include/SkSVGDOM.h" #include "src/xml/SkDOM.h" #endif #include #include #include #include #include #include #include /** * This is a minimalist program whose sole purpose is to open a .skp or .svg file, benchmark it on a * single config, and exit. It is intended to be used through skpbench.py rather than invoked * directly. Limiting the entire process to a single config/skp pair helps to keep the results * repeatable. * * No tiling, looping, or other fanciness is used; it just draws the skp whole into a size-matched * render target and syncs the GPU after each draw. * * Well, maybe a little fanciness, MSKP's can be loaded and played. The animation is played as many * times as necessary to reach the target sample duration and FPS is reported. * * Currently, only GPU configs are supported. */ static DEFINE_bool(ddl, false, "record the skp into DDLs before rendering"); static DEFINE_int(ddlNumRecordingThreads, 0, "number of DDL recording threads (0=num_cores)"); static DEFINE_int(ddlTilingWidthHeight, 0, "number of tiles along one edge when in DDL mode"); static DEFINE_bool(comparableDDL, false, "render in a way that is comparable to 'comparableSKP'"); static DEFINE_bool(comparableSKP, false, "report in a way that is comparable to 'comparableDDL'"); static DEFINE_int(duration, 5000, "number of milliseconds to run the benchmark"); static DEFINE_int(sampleMs, 50, "minimum duration of a sample"); static DEFINE_bool(gpuClock, false, "time on the gpu clock (gpu work only)"); static DEFINE_bool(fps, false, "use fps instead of ms"); static DEFINE_string(src, "", "path to a single .skp or .svg file, or 'warmup' for a builtin warmup run"); static DEFINE_string(png, "", "if set, save a .png proof to disk at this file location"); static DEFINE_int(verbosity, 4, "level of verbosity (0=none to 5=debug)"); static DEFINE_bool(suppressHeader, false, "don't print a header row before the results"); static DEFINE_double(scale, 1, "Scale the size of the canvas and the zoom level by this factor."); static DEFINE_bool(dumpSamples, false, "print the individual samples to stdout"); static const char header[] = " accum median max min stddev samples sample_ms clock metric config bench"; static const char resultFormat[] = "%8.4g %8.4g %8.4g %8.4g %6.3g%% %7zu %9i %-5s %-6s %-9s %s"; static constexpr int kNumFlushesToPrimeCache = 3; struct Sample { using duration = std::chrono::nanoseconds; Sample() : fFrames(0), fDuration(0) {} double seconds() const { return std::chrono::duration(fDuration).count(); } double ms() const { return std::chrono::duration(fDuration).count(); } double value() const { return FLAGS_fps ? fFrames / this->seconds() : this->ms() / fFrames; } static const char* metric() { return FLAGS_fps ? "fps" : "ms"; } int fFrames; duration fDuration; }; class GpuSync { public: GpuSync() {} ~GpuSync() {} void waitIfNeeded(); sk_gpu_test::FlushFinishTracker* newFlushTracker(GrDirectContext* context); private: enum { kMaxFrameLag = 3 }; sk_sp fFinishTrackers[kMaxFrameLag - 1]; int fCurrentFlushIdx = 0; }; enum class ExitErr { kOk = 0, kUsage = 64, kData = 65, kUnavailable = 69, kIO = 74, kSoftware = 70 }; static void flush_with_sync(GrDirectContext*, GpuSync&); static void draw_skp_and_flush_with_sync(GrDirectContext*, SkSurface*, const SkPicture*, GpuSync&); static sk_sp create_warmup_skp(); static sk_sp create_skp_from_svg(SkStream*, const char* filename); static bool mkdir_p(const SkString& name); static SkString join(const CommandLineFlags::StringArray&); static void exitf(ExitErr, const char* format, ...); // An interface used by both static SKPs and animated SKPs class SkpProducer { public: virtual ~SkpProducer() {} // Draw an SkPicture to the provided surface, flush the surface, and sync the GPU. // You may use the static draw_skp_and_flush_with_sync declared above. // returned int tells how many draw/flush/sync were done. virtual int drawAndFlushAndSync(GrDirectContext*, SkSurface* surface, GpuSync& gpuSync) = 0; }; class StaticSkp : public SkpProducer { public: StaticSkp(sk_sp skp) : fSkp(skp) {} int drawAndFlushAndSync(GrDirectContext* context, SkSurface* surface, GpuSync& gpuSync) override { draw_skp_and_flush_with_sync(context, surface, fSkp.get(), gpuSync); return 1; } private: sk_sp fSkp; }; // A class for playing/benchmarking a multi frame SKP file. // the recorded frames are looped over repeatedly. // This type of benchmark may have a much higher std dev in frame times. class MultiFrameSkp : public SkpProducer { public: MultiFrameSkp(const std::vector& frames) : fFrames(frames){} static std::unique_ptr MakeFromFile(const SkString& path) { // Load the multi frame skp at the given filename. std::unique_ptr stream = SkStream::MakeFromFile(path.c_str()); if (!stream) { return nullptr; } // Attempt to deserialize with an image sharing serial proc. auto deserialContext = std::make_unique(); SkDeserialProcs procs; procs.fImageProc = SkSharingDeserialContext::deserializeImage; procs.fImageCtx = deserialContext.get(); // The outer format of multi-frame skps is the multi-picture document, which is a // skp file containing subpictures separated by annotations. int page_count = SkMultiPictureDocumentReadPageCount(stream.get()); if (!page_count) { return nullptr; } std::vector frames(page_count); // can't call reserve, why? if (!SkMultiPictureDocumentRead(stream.get(), frames.data(), page_count, &procs)) { return nullptr; } return std::make_unique(frames); } // Draw the whole animation once. int drawAndFlushAndSync(GrDirectContext* context, SkSurface* surface, GpuSync& gpuSync) override { for (int i=0; icount(); i++){ draw_skp_and_flush_with_sync(context, surface, this->frame(i).get(), gpuSync); } return this->count(); } // Return the requested frame. sk_sp frame(int n) const { return fFrames[n].fPicture; } // Return the number of frames in the recording. int count() const { return fFrames.size(); } private: std::vector fFrames; }; static void ddl_sample(GrDirectContext* dContext, DDLTileHelper* tiles, GpuSync& gpuSync, Sample* sample, SkTaskGroup* recordingTaskGroup, SkTaskGroup* gpuTaskGroup, std::chrono::high_resolution_clock::time_point* startStopTime, SkPicture* picture) { using clock = std::chrono::high_resolution_clock; clock::time_point start = *startStopTime; if (FLAGS_comparableDDL) { SkASSERT(!FLAGS_comparableSKP); // In this mode we simply alternate between creating a DDL and drawing it - all on one // thread. The interleaving is so that we don't starve the GPU. // One unfortunate side effect of this is that we can't delete the DDLs until after // the GPU work is flushed. tiles->interleaveDDLCreationAndDraw(dContext, picture); } else if (FLAGS_comparableSKP) { // In this mode simply draw the re-inflated per-tile SKPs directly to the GPU w/o going // through a DDL. tiles->drawAllTilesDirectly(dContext, picture); } else { tiles->kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, dContext, picture); recordingTaskGroup->wait(); } if (gpuTaskGroup) { gpuTaskGroup->add([&]{ flush_with_sync(dContext, gpuSync); }); gpuTaskGroup->wait(); } else { flush_with_sync(dContext, gpuSync); } *startStopTime = clock::now(); if (sample) { sample->fDuration += *startStopTime - start; sample->fFrames++; } } static void run_ddl_benchmark(sk_gpu_test::TestContext* testContext, GrDirectContext *dContext, sk_sp dstSurface, SkPicture* inputPicture, std::vector* samples) { using clock = std::chrono::high_resolution_clock; const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); SkSurfaceCharacterization dstCharacterization; SkAssertResult(dstSurface->characterize(&dstCharacterization)); SkIRect viewport = dstSurface->imageInfo().bounds(); SkYUVAPixmapInfo::SupportedDataTypes supportedYUVADataTypes(*dContext); DDLPromiseImageHelper promiseImageHelper(supportedYUVADataTypes); sk_sp newSKP = promiseImageHelper.recreateSKP(dContext, inputPicture); if (!newSKP) { exitf(ExitErr::kUnavailable, "DDL: conversion of skp failed"); } promiseImageHelper.uploadAllToGPU(nullptr, dContext); DDLTileHelper tiles(dContext, dstCharacterization, viewport, FLAGS_ddlTilingWidthHeight, FLAGS_ddlTilingWidthHeight, /* addRandomPaddingToDst */ false); tiles.createBackendTextures(nullptr, dContext); // In comparable modes, there is no GPU thread. The following pointers are all null. // Otherwise, we transfer testContext onto the GPU thread until after the bench. std::unique_ptr gpuThread; std::unique_ptr gpuTaskGroup; std::unique_ptr recordingThreadPool; std::unique_ptr recordingTaskGroup; if (!FLAGS_comparableDDL && !FLAGS_comparableSKP) { gpuThread = SkExecutor::MakeFIFOThreadPool(1, false); gpuTaskGroup = std::make_unique(*gpuThread); recordingThreadPool = SkExecutor::MakeFIFOThreadPool(FLAGS_ddlNumRecordingThreads, false); recordingTaskGroup = std::make_unique(*recordingThreadPool); testContext->makeNotCurrent(); gpuTaskGroup->add([=]{ testContext->makeCurrent(); }); } clock::time_point startStopTime = clock::now(); GpuSync gpuSync; ddl_sample(dContext, &tiles, gpuSync, nullptr, recordingTaskGroup.get(), gpuTaskGroup.get(), &startStopTime, newSKP.get()); clock::duration cumulativeDuration = std::chrono::milliseconds(0); do { samples->emplace_back(); Sample& sample = samples->back(); do { tiles.resetAllTiles(); ddl_sample(dContext, &tiles, gpuSync, &sample, recordingTaskGroup.get(), gpuTaskGroup.get(), &startStopTime, newSKP.get()); } while (sample.fDuration < sampleDuration); cumulativeDuration += sample.fDuration; } while (cumulativeDuration < benchDuration || 0 == samples->size() % 2); // Move the context back to this thread now that we're done benching. if (gpuTaskGroup) { gpuTaskGroup->add([=]{ testContext->makeNotCurrent(); }); gpuTaskGroup->wait(); testContext->makeCurrent(); } if (!FLAGS_png.isEmpty()) { // The user wants to see the final result dstSurface->draw(tiles.composeDDL()); dstSurface->flushAndSubmit(); } tiles.resetAllTiles(); // Make sure the gpu has finished all its work before we exit this function and delete the // fence. dContext->flush(); dContext->submit(true); promiseImageHelper.deleteAllFromGPU(nullptr, dContext); tiles.deleteBackendTextures(nullptr, dContext); } static void run_benchmark(GrDirectContext* context, SkSurface* surface, SkpProducer* skpp, std::vector* samples) { using clock = std::chrono::high_resolution_clock; const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); GpuSync gpuSync; int i = 0; do { i += skpp->drawAndFlushAndSync(context, surface, gpuSync); } while(i < kNumFlushesToPrimeCache); clock::time_point now = clock::now(); const clock::time_point endTime = now + benchDuration; do { clock::time_point sampleStart = now; samples->emplace_back(); Sample& sample = samples->back(); do { sample.fFrames += skpp->drawAndFlushAndSync(context, surface, gpuSync); now = clock::now(); sample.fDuration = now - sampleStart; } while (sample.fDuration < sampleDuration); } while (now < endTime || 0 == samples->size() % 2); // Make sure the gpu has finished all its work before we exit this function and delete the // fence. surface->flush(); context->submit(true); } static void run_gpu_time_benchmark(sk_gpu_test::GpuTimer* gpuTimer, GrDirectContext* context, SkSurface* surface, const SkPicture* skp, std::vector* samples) { using sk_gpu_test::PlatformTimerQuery; using clock = std::chrono::steady_clock; const clock::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs); const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration); if (!gpuTimer->disjointSupport()) { fprintf(stderr, "WARNING: GPU timer cannot detect disjoint operations; " "results may be unreliable\n"); } GpuSync gpuSync; draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); PlatformTimerQuery previousTime = 0; for (int i = 1; i < kNumFlushesToPrimeCache; ++i) { gpuTimer->queueStart(); draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); previousTime = gpuTimer->queueStop(); } clock::time_point now = clock::now(); const clock::time_point endTime = now + benchDuration; do { const clock::time_point sampleEndTime = now + sampleDuration; samples->emplace_back(); Sample& sample = samples->back(); do { gpuTimer->queueStart(); draw_skp_and_flush_with_sync(context, surface, skp, gpuSync); PlatformTimerQuery time = gpuTimer->queueStop(); switch (gpuTimer->checkQueryStatus(previousTime)) { using QueryStatus = sk_gpu_test::GpuTimer::QueryStatus; case QueryStatus::kInvalid: exitf(ExitErr::kUnavailable, "GPU timer failed"); break; case QueryStatus::kPending: exitf(ExitErr::kUnavailable, "timer query still not ready after fence sync"); break; case QueryStatus::kDisjoint: if (FLAGS_verbosity >= 4) { fprintf(stderr, "discarding timer query due to disjoint operations.\n"); } break; case QueryStatus::kAccurate: sample.fDuration += gpuTimer->getTimeElapsed(previousTime); ++sample.fFrames; break; } gpuTimer->deleteQuery(previousTime); previousTime = time; now = clock::now(); } while (now < sampleEndTime || 0 == sample.fFrames); } while (now < endTime || 0 == samples->size() % 2); gpuTimer->deleteQuery(previousTime); // Make sure the gpu has finished all its work before we exit this function and delete the // fence. surface->flush(); context->submit(true); } void print_result(const std::vector& samples, const char* config, const char* bench) { if (0 == (samples.size() % 2)) { exitf(ExitErr::kSoftware, "attempted to gather stats on even number of samples"); } if (FLAGS_dumpSamples) { printf("Samples: "); for (const Sample& sample : samples) { printf("%" PRId64 " ", static_cast(sample.fDuration.count())); } printf("%s\n", bench); } Sample accum = Sample(); std::vector values; values.reserve(samples.size()); for (const Sample& sample : samples) { accum.fFrames += sample.fFrames; accum.fDuration += sample.fDuration; values.push_back(sample.value()); } std::sort(values.begin(), values.end()); const double accumValue = accum.value(); double variance = 0; for (double value : values) { const double delta = value - accumValue; variance += delta * delta; } variance /= values.size(); // Technically, this is the relative standard deviation. const double stddev = 100/*%*/ * sqrt(variance) / accumValue; printf(resultFormat, accumValue, values[values.size() / 2], values.back(), values.front(), stddev, values.size(), FLAGS_sampleMs, FLAGS_gpuClock ? "gpu" : "cpu", Sample::metric(), config, bench); printf("\n"); fflush(stdout); } int main(int argc, char** argv) { CommandLineFlags::SetUsage( "Use skpbench.py instead. " "You usually don't want to use this program directly."); CommandLineFlags::Parse(argc, argv); if (!FLAGS_suppressHeader) { printf("%s\n", header); } if (FLAGS_duration <= 0) { exit(0); // This can be used to print the header and quit. } // Parse the config. const SkCommandLineConfigGpu* config = nullptr; // Initialize for spurious warning. SkCommandLineConfigArray configs; ParseConfigs(FLAGS_config, &configs); if (configs.count() != 1 || !(config = configs[0]->asConfigGpu())) { exitf(ExitErr::kUsage, "invalid config '%s': must specify one (and only one) GPU config", join(FLAGS_config).c_str()); } // Parse the skp. if (FLAGS_src.count() != 1) { exitf(ExitErr::kUsage, "invalid input '%s': must specify a single .skp or .svg file, or 'warmup'", join(FLAGS_src).c_str()); } SkGraphics::Init(); sk_sp skp; std::unique_ptr mskp; // populated if the file is multi frame. SkString srcname; if (0 == strcmp(FLAGS_src[0], "warmup")) { skp = create_warmup_skp(); srcname = "warmup"; } else { SkString srcfile(FLAGS_src[0]); std::unique_ptr srcstream(SkStream::MakeFromFile(srcfile.c_str())); if (!srcstream) { exitf(ExitErr::kIO, "failed to open file %s", srcfile.c_str()); } if (srcfile.endsWith(".svg")) { skp = create_skp_from_svg(srcstream.get(), srcfile.c_str()); } else if (srcfile.endsWith(".mskp")) { mskp = MultiFrameSkp::MakeFromFile(srcfile); // populate skp with it's first frame, for width height determination. skp = mskp->frame(0); } else { skp = SkPicture::MakeFromStream(srcstream.get()); } if (!skp) { exitf(ExitErr::kData, "failed to parse file %s", srcfile.c_str()); } srcname = SkOSPath::Basename(srcfile.c_str()); } int width = std::min(SkScalarCeilToInt(skp->cullRect().width()), 2048), height = std::min(SkScalarCeilToInt(skp->cullRect().height()), 2048); if (FLAGS_verbosity >= 3 && (width != skp->cullRect().width() || height != skp->cullRect().height())) { fprintf(stderr, "%s is too large (%ix%i), cropping to %ix%i.\n", srcname.c_str(), SkScalarCeilToInt(skp->cullRect().width()), SkScalarCeilToInt(skp->cullRect().height()), width, height); } if (FLAGS_scale != 1) { width *= FLAGS_scale; height *= FLAGS_scale; if (FLAGS_verbosity >= 3) { fprintf(stderr, "Scale factor of %.2f: scaling to %ix%i.\n", FLAGS_scale, width, height); } } if (config->getSurfType() != SkCommandLineConfigGpu::SurfType::kDefault) { exitf(ExitErr::kUnavailable, "This tool only supports the default surface type. (%s)", config->getTag().c_str()); } // Create a context. GrContextOptions ctxOptions; CommonFlags::SetCtxOptions(&ctxOptions); sk_gpu_test::GrContextFactory factory(ctxOptions); sk_gpu_test::ContextInfo ctxInfo = factory.getContextInfo(config->getContextType(), config->getContextOverrides()); auto ctx = ctxInfo.directContext(); if (!ctx) { exitf(ExitErr::kUnavailable, "failed to create context for config %s", config->getTag().c_str()); } if (ctx->maxRenderTargetSize() < std::max(width, height)) { exitf(ExitErr::kUnavailable, "render target size %ix%i not supported by platform (max: %i)", width, height, ctx->maxRenderTargetSize()); } GrBackendFormat format = ctx->defaultBackendFormat(config->getColorType(), GrRenderable::kYes); if (!format.isValid()) { exitf(ExitErr::kUnavailable, "failed to get GrBackendFormat from SkColorType: %d", config->getColorType()); } int supportedSampleCount = ctx->priv().caps()->getRenderTargetSampleCount( config->getSamples(), format); if (supportedSampleCount != config->getSamples()) { exitf(ExitErr::kUnavailable, "sample count %i not supported by platform", config->getSamples()); } sk_gpu_test::TestContext* testCtx = ctxInfo.testContext(); if (!testCtx) { exitf(ExitErr::kSoftware, "testContext is null"); } if (!testCtx->fenceSyncSupport()) { exitf(ExitErr::kUnavailable, "GPU does not support fence sync"); } // Create a render target. SkImageInfo info = SkImageInfo::Make( width, height, config->getColorType(), config->getAlphaType(), config->refColorSpace()); SkSurfaceProps props(config->getSurfaceFlags(), kRGB_H_SkPixelGeometry); sk_sp surface = SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info, config->getSamples(), &props); if (!surface) { exitf(ExitErr::kUnavailable, "failed to create %ix%i render target for config %s", width, height, config->getTag().c_str()); } // Run the benchmark. std::vector samples; if (FLAGS_sampleMs > 0) { // +1 because we might take one more sample in order to have an odd number. samples.reserve(1 + (FLAGS_duration + FLAGS_sampleMs - 1) / FLAGS_sampleMs); } else { samples.reserve(2 * FLAGS_duration); } SkCanvas* canvas = surface->getCanvas(); canvas->translate(-skp->cullRect().x(), -skp->cullRect().y()); if (FLAGS_scale != 1) { canvas->scale(FLAGS_scale, FLAGS_scale); } if (!FLAGS_gpuClock) { if (FLAGS_ddl) { run_ddl_benchmark(testCtx, ctx, surface, skp.get(), &samples); } else if (!mskp) { auto s = std::make_unique(skp); run_benchmark(ctx, surface.get(), s.get(), &samples); } else { run_benchmark(ctx, surface.get(), mskp.get(), &samples); } } else { if (FLAGS_ddl) { exitf(ExitErr::kUnavailable, "DDL: GPU-only timing not supported"); } if (!testCtx->gpuTimingSupport()) { exitf(ExitErr::kUnavailable, "GPU does not support timing"); } run_gpu_time_benchmark(testCtx->gpuTimer(), ctx, surface.get(), skp.get(), &samples); } print_result(samples, config->getTag().c_str(), srcname.c_str()); // Save a proof (if one was requested). if (!FLAGS_png.isEmpty()) { SkBitmap bmp; bmp.allocPixels(info); if (!surface->getCanvas()->readPixels(bmp, 0, 0)) { exitf(ExitErr::kUnavailable, "failed to read canvas pixels for png"); } if (!mkdir_p(SkOSPath::Dirname(FLAGS_png[0]))) { exitf(ExitErr::kIO, "failed to create directory for png \"%s\"", FLAGS_png[0]); } if (!ToolUtils::EncodeImageToFile(FLAGS_png[0], bmp, SkEncodedImageFormat::kPNG, 100)) { exitf(ExitErr::kIO, "failed to save png to \"%s\"", FLAGS_png[0]); } } return(0); } static void flush_with_sync(GrDirectContext* context, GpuSync& gpuSync) { gpuSync.waitIfNeeded(); GrFlushInfo flushInfo; flushInfo.fFinishedProc = sk_gpu_test::FlushFinishTracker::FlushFinished; flushInfo.fFinishedContext = gpuSync.newFlushTracker(context); context->flush(flushInfo); context->submit(); } static void draw_skp_and_flush_with_sync(GrDirectContext* context, SkSurface* surface, const SkPicture* skp, GpuSync& gpuSync) { auto canvas = surface->getCanvas(); canvas->drawPicture(skp); flush_with_sync(context, gpuSync); } static sk_sp create_warmup_skp() { static constexpr SkRect bounds{0, 0, 500, 500}; SkPictureRecorder recorder; SkCanvas* recording = recorder.beginRecording(bounds); recording->clear(SK_ColorWHITE); SkPaint stroke; stroke.setStyle(SkPaint::kStroke_Style); stroke.setStrokeWidth(2); // Use a big path to (theoretically) warmup the CPU. SkPath bigPath = BenchUtils::make_big_path(); recording->drawPath(bigPath, stroke); // Use a perlin shader to warmup the GPU. SkPaint perlin; perlin.setShader(SkPerlinNoiseShader::MakeTurbulence(0.1f, 0.1f, 1, 0, nullptr)); recording->drawRect(bounds, perlin); return recorder.finishRecordingAsPicture(); } static sk_sp create_skp_from_svg(SkStream* stream, const char* filename) { #if defined(SK_ENABLE_SVG) sk_sp svg = SkSVGDOM::MakeFromStream(*stream); if (!svg) { exitf(ExitErr::kData, "failed to build svg dom from file %s", filename); } static constexpr SkRect bounds{0, 0, 1200, 1200}; SkPictureRecorder recorder; SkCanvas* recording = recorder.beginRecording(bounds); svg->setContainerSize(SkSize::Make(recording->getBaseLayerSize())); svg->render(recording); return recorder.finishRecordingAsPicture(); #endif exitf(ExitErr::kData, "SK_ENABLE_SVG is disabled; cannot open svg file %s", filename); return nullptr; } bool mkdir_p(const SkString& dirname) { if (dirname.isEmpty() || dirname == SkString("/")) { return true; } return mkdir_p(SkOSPath::Dirname(dirname.c_str())) && sk_mkdir(dirname.c_str()); } static SkString join(const CommandLineFlags::StringArray& stringArray) { SkString joined; for (int i = 0; i < stringArray.count(); ++i) { joined.appendf(i ? " %s" : "%s", stringArray[i]); } return joined; } static void exitf(ExitErr err, const char* format, ...) SK_PRINTF_LIKE(2, 3); static void exitf(ExitErr err, const char* format, ...) { fprintf(stderr, ExitErr::kSoftware == err ? "INTERNAL ERROR: " : "ERROR: "); va_list args; va_start(args, format); vfprintf(stderr, format, args); va_end(args); fprintf(stderr, ExitErr::kSoftware == err ? "; this should never happen.\n": ".\n"); exit((int)err); } void GpuSync::waitIfNeeded() { if (fFinishTrackers[fCurrentFlushIdx]) { fFinishTrackers[fCurrentFlushIdx]->waitTillFinished(); } } sk_gpu_test::FlushFinishTracker* GpuSync::newFlushTracker(GrDirectContext* context) { fFinishTrackers[fCurrentFlushIdx].reset(new sk_gpu_test::FlushFinishTracker(context)); sk_gpu_test::FlushFinishTracker* tracker = fFinishTrackers[fCurrentFlushIdx].get(); // We add an additional ref to the current flush tracker here. This ref is owned by the finish // callback on the flush call. The finish callback will unref the tracker when called. tracker->ref(); fCurrentFlushIdx = (fCurrentFlushIdx + 1) % SK_ARRAY_COUNT(fFinishTrackers); return tracker; }