/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkCodec.h" #include "SkColorSpacePriv.h" #include "SkColorSpace_A2B.h" #include "SkColorSpace_XYZ.h" #include "SkCommandLineFlags.h" #include "SkICCPriv.h" #include "SkImageEncoder.h" #include "SkMatrix44.h" #include "SkOSFile.h" #include "SkRasterPipeline.h" #include "../src/jumper/SkJumper.h" #include "sk_tool_utils.h" #include <sstream> #include <string> #include <vector> DEFINE_string(input, "input.png", "A path to the input image (or icc profile with --icc)."); DEFINE_string(output, ".", "A path to the output image directory."); DEFINE_bool(icc, false, "Indicates that the input is an icc profile."); DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization."); DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization."); DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images."); DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image."); //------------------------------------------------------------------------------------------------- //------------------------------------ Gamma visualizations --------------------------------------- static const char* kRGBChannelNames[3] = { "Red ", "Green", "Blue " }; static const SkColor kRGBChannelColors[3] = { SkColorSetARGB(128, 255, 0, 0), SkColorSetARGB(128, 0, 255, 0), SkColorSetARGB(128, 0, 0, 255) }; static const char* kGrayChannelNames[1] = { "Gray"}; static const SkColor kGrayChannelColors[1] = { SkColorSetRGB(128, 128, 128) }; static const char* kCMYKChannelNames[4] = { "Cyan ", "Magenta", "Yellow ", "Black " }; static const SkColor kCMYKChannelColors[4] = { SkColorSetARGB(128, 0, 255, 255), SkColorSetARGB(128, 255, 0, 255), SkColorSetARGB(128, 255, 255, 0), SkColorSetARGB(128, 16, 16, 16) }; static const char*const*const kChannelNames[4] = { kGrayChannelNames, kRGBChannelNames, kRGBChannelNames, kCMYKChannelNames }; static const SkColor*const kChannelColors[4] = { kGrayChannelColors, kRGBChannelColors, kRGBChannelColors, kCMYKChannelColors }; static void dump_transfer_fn(SkGammaNamed gammaNamed) { switch (gammaNamed) { case kSRGB_SkGammaNamed: SkDebugf("Transfer Function: sRGB\n"); return; case k2Dot2Curve_SkGammaNamed: SkDebugf("Exponential Transfer Function: Exponent 2.2\n"); return; case kLinear_SkGammaNamed: SkDebugf("Transfer Function: Linear\n"); return; default: break; } } static constexpr int kGammaImageWidth = 500; static constexpr int kGammaImageHeight = 500; static void dump_transfer_fn(const SkGammas& gammas) { SkASSERT(gammas.channels() <= 4); const char*const*const channels = kChannelNames[gammas.channels() - 1]; for (int i = 0; i < gammas.channels(); i++) { if (gammas.isNamed(i)) { switch (gammas.data(i).fNamed) { case kSRGB_SkGammaNamed: SkDebugf("%s Transfer Function: sRGB\n", channels[i]); return; case k2Dot2Curve_SkGammaNamed: SkDebugf("%s Transfer Function: Exponent 2.2\n", channels[i]); return; case kLinear_SkGammaNamed: SkDebugf("%s Transfer Function: Linear\n", channels[i]); return; default: SkASSERT(false); continue; } } else if (gammas.isValue(i)) { SkDebugf("%s Transfer Function: Exponent %.3f\n", channels[i], gammas.data(i).fValue); } else if (gammas.isParametric(i)) { const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas); SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, " "E = %.3f, F = %.3f, G = %.3f\n", channels[i], fn.fA, fn.fB, fn.fC, fn.fD, fn.fE, fn.fF, fn.fG); } else { SkASSERT(gammas.isTable(i)); SkDebugf("%s Transfer Function: Table (%d entries)\n", channels[i], gammas.data(i).fTable.fSize); } } } static inline float parametric(const SkColorSpaceTransferFn& fn, float x) { return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE : fn.fC*x + fn.fF; } static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas, SkColor color) { SkColorSpaceTransferFn fn[4]; struct TableInfo { const float* fTable; int fSize; }; TableInfo table[4]; bool isTable[4] = {false, false, false, false}; const int channels = gammas ? gammas->channels() : 1; SkASSERT(channels <= 4); if (kNonStandard_SkGammaNamed != gammaNamed) { dump_transfer_fn(gammaNamed); for (int i = 0; i < channels; ++i) { named_to_parametric(&fn[i], gammaNamed); } } else { SkASSERT(gammas); dump_transfer_fn(*gammas); for (int i = 0; i < channels; ++i) { if (gammas->isTable(i)) { table[i].fTable = gammas->table(i); table[i].fSize = gammas->data(i).fTable.fSize; isTable[i] = true; } else { switch (gammas->type(i)) { case SkGammas::Type::kNamed_Type: named_to_parametric(&fn[i], gammas->data(i).fNamed); break; case SkGammas::Type::kValue_Type: value_to_parametric(&fn[i], gammas->data(i).fValue); break; case SkGammas::Type::kParam_Type: fn[i] = gammas->params(i); break; default: SkASSERT(false); } } } } SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setColor(color); paint.setStrokeWidth(2.0f); // note: gamma has positive values going up in this image so this origin is // the bottom left and we must subtract y instead of adding. const float gap = 16.0f; const float gammaWidth = kGammaImageWidth - 2 * gap; const float gammaHeight = kGammaImageHeight - 2 * gap; // gamma origin point const float ox = gap; const float oy = gap + gammaHeight; for (int i = 0; i < channels; ++i) { if (kNonStandard_SkGammaNamed == gammaNamed) { paint.setColor(kChannelColors[channels - 1][i]); } else { paint.setColor(color); } if (isTable[i]) { auto tx = [&table,i](int index) { return index / (table[i].fSize - 1.0f); }; for (int ti = 1; ti < table[i].fSize; ++ti) { canvas->drawLine(ox + gammaWidth * tx(ti - 1), oy - gammaHeight * table[i].fTable[ti - 1], ox + gammaWidth * tx(ti), oy - gammaHeight * table[i].fTable[ti], paint); } } else { const float step = 0.01f; float yPrev = parametric(fn[i], 0.0f); for (float x = step; x <= 1.0f; x += step) { const float y = parametric(fn[i], x); canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev, ox + gammaWidth * x, oy - gammaHeight * y, paint); yPrev = y; } } } paint.setColor(0xFF000000); paint.setStrokeWidth(3.0f); canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint); } //------------------------------------------------------------------------------------------------- //------------------------------------ CLUT visualizations ---------------------------------------- static void dump_clut(const SkColorLookUpTable& clut) { SkDebugf("CLUT: "); for (int i = 0; i < clut.inputChannels(); ++i) { SkDebugf("[%d]", clut.gridPoints(i)); } SkDebugf(" -> [%d]\n", clut.outputChannels()); } constexpr int kClutGap = 8; constexpr float kClutCanvasSize = 2000; static inline int usedGridPoints(const SkColorLookUpTable& clut, int dimension) { const int gp = clut.gridPoints(dimension); return gp <= 16 ? gp : 16; } // how many rows of cross-section cuts to display static inline int cut_rows(const SkColorLookUpTable& clut, int dimOrder[4]) { // and vertical ones for the 4th dimension (if applicable) return clut.inputChannels() >= 4 ? usedGridPoints(clut, dimOrder[3]) : 1; } // how many columns of cross-section cuts to display static inline int cut_cols(const SkColorLookUpTable& clut, int dimOrder[4]) { // do horizontal cuts for the 3rd dimension (if applicable) return clut.inputChannels() >= 3 ? usedGridPoints(clut, dimOrder[2]) : 1; } // gets the width/height to use for cross-sections of a CLUT static int cut_size(const SkColorLookUpTable& clut, int dimOrder[4]) { const int rows = cut_rows(clut, dimOrder); const int cols = cut_cols(clut, dimOrder); // make sure the cross-section CLUT cuts are square still by using the // smallest of the width/height, then adjust the gaps between accordingly const int cutWidth = (kClutCanvasSize - kClutGap * (1 + cols)) / cols; const int cutHeight = (kClutCanvasSize - kClutGap * (1 + rows)) / rows; return cutWidth < cutHeight ? cutWidth : cutHeight; } static void clut_interp(const SkColorLookUpTable& clut, float out[3], const float in[4]) { // This is kind of a toy implementation. // You generally wouldn't want to do this 1 pixel at a time. SkJumper_ColorLookupTableCtx ctx; ctx.table = clut.table(); for (int i = 0; i < clut.inputChannels(); i++) { ctx.limits[i] = clut.gridPoints(i); } SkSTArenaAlloc<256> alloc; SkRasterPipeline p(&alloc); p.append_constant_color(&alloc, in); p.append(clut.inputChannels() == 3 ? SkRasterPipeline::clut_3D : SkRasterPipeline::clut_4D, &ctx); p.append(SkRasterPipeline::clamp_0); p.append(SkRasterPipeline::clamp_1); p.append(SkRasterPipeline::store_f32, &out); p.run(0,0, 1,1); } static void draw_clut(SkCanvas* canvas, const SkColorLookUpTable& clut, int dimOrder[4]) { dump_clut(clut); const int cutSize = cut_size(clut, dimOrder); const int rows = cut_rows(clut, dimOrder); const int cols = cut_cols(clut, dimOrder); const int cutHorizGap = (kClutCanvasSize - cutSize * cols) / (1 + cols); const int cutVertGap = (kClutCanvasSize - cutSize * rows) / (1 + rows); SkPaint paint; for (int row = 0; row < rows; ++row) { for (int col = 0; col < cols; ++col) { // make sure to move at least one pixel, but otherwise move per-gridpoint const float xStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[0])) - 1); const float yStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[1])) - 1); const float ox = clut.inputChannels() >= 3 ? (1 + col) * cutHorizGap + col * cutSize : kClutGap; const float oy = clut.inputChannels() >= 4 ? (1 + row) * cutVertGap + row * cutSize : kClutGap; // for each cross-section cut, draw a bunch of squares whose colour is the top-left's // colour in the CLUT (usually this will just draw the gridpoints) for (float x = 0.0f; x < 1.0f; x += xStep) { for (float y = 0.0f; y < 1.0f; y += yStep) { const float z = col / (cols - 1.0f); const float w = row / (rows - 1.0f); const float input[4] = {x, y, z, w}; float output[3]; clut_interp(clut, output, input); paint.setColor(SkColorSetRGB(255*output[0], 255*output[1], 255*output[2])); canvas->drawRect(SkRect::MakeLTRB(ox + cutSize * x, oy + cutSize * y, ox + cutSize * (x + xStep), oy + cutSize * (y + yStep)), paint); } } } } } //------------------------------------------------------------------------------------------------- //------------------------------------ Gamut visualizations --------------------------------------- static void dump_matrix(const SkMatrix44& m) { for (int r = 0; r < 4; ++r) { SkDebugf("|"); for (int c = 0; c < 4; ++c) { SkDebugf(" %f ", m.get(r, c)); } SkDebugf("|\n"); } } /** * Loads the triangular gamut as a set of three points. */ static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) { // rx = rX / (rX + rY + rZ) // ry = rX / (rX + rY + rZ) // gx, gy, bx, and gy are calulcated similarly. float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0); float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1); float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2); rgb[0].fX = xyz.get(0, 0) / rSum; rgb[0].fY = xyz.get(1, 0) / rSum; rgb[1].fX = xyz.get(0, 1) / gSum; rgb[1].fY = xyz.get(1, 1) / gSum; rgb[2].fX = xyz.get(0, 2) / bSum; rgb[2].fY = xyz.get(1, 2) / bSum; } /** * Calculates the area of the triangular gamut. */ static float calculate_area(SkPoint abc[]) { SkPoint a = abc[0]; SkPoint b = abc[1]; SkPoint c = abc[2]; return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY); } static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color, bool label) { // Report the XYZ values. SkDebugf("%s\n", name); SkDebugf(" R G B\n"); SkDebugf("X %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2)); SkDebugf("Y %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2)); SkDebugf("Z %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2)); // Calculate the points in the gamut from the XYZ values. SkPoint rgb[4]; load_gamut(rgb, xyz); // Report the area of the gamut. SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb)); // Magic constants that help us place the gamut triangles in the appropriate position // on the canvas. const float xScale = 2071.25f; // Num pixels from 0 to 1 in x const float xOffset = 241.0f; // Num pixels until start of x-axis const float yScale = 2067.78f; // Num pixels from 0 to 1 in y const float yOffset = -144.78f; // Num pixels until start of y-axis // (negative because y extends beyond image bounds) // Now transform the points so they can be drawn on our canvas. // Note that y increases as we move down the canvas. rgb[0].fX = xOffset + xScale * rgb[0].fX; rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY); rgb[1].fX = xOffset + xScale * rgb[1].fX; rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY); rgb[2].fX = xOffset + xScale * rgb[2].fX; rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY); // Repeat the first point to connect the polygon. rgb[3] = rgb[0]; SkPaint paint; paint.setColor(color); paint.setStrokeWidth(6.0f); paint.setTextSize(75.0f); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint); if (label) { canvas->drawString("R", rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint); canvas->drawString("G", rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint); canvas->drawString("B", rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint); } } //------------------------------------------------------------------------------------------------- //----------------------------------------- Main code --------------------------------------------- static SkBitmap transparentBitmap(int width, int height) { SkBitmap bitmap; bitmap.allocN32Pixels(width, height); bitmap.eraseColor(SkColorSetARGB(0, 0, 0, 0)); return bitmap; } class OutputCanvas { public: OutputCanvas(SkBitmap&& bitmap) :fBitmap(bitmap) ,fCanvas(fBitmap) {} bool save(std::vector<std::string>* output, const std::string& filename) { // Finally, encode the result to the output file. sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(fBitmap, SkEncodedImageFormat::kPNG, 100); if (!out) { SkDebugf("Failed to encode %s output.\n", filename.c_str()); return false; } SkFILEWStream stream(filename.c_str()); if (!stream.write(out->data(), out->size())) { SkDebugf("Failed to write %s output.\n", filename.c_str()); return false; } // record name of canvas output->push_back(filename); return true; } SkCanvas* canvas() { return &fCanvas; } private: SkBitmap fBitmap; SkCanvas fCanvas; }; int main(int argc, char** argv) { SkCommandLineFlags::SetUsage( "Usage: colorspaceinfo --input <path to input image (or icc profile with --icc)> " "--output <directory to output images> " "--icc <indicates that the input is an icc profile>" "--sRGB_gamut <draw canonical sRGB gamut> " "--adobeRGB <draw canonical Adobe RGB gamut> " "--sRGB_gamma <draw sRGB gamma> " "--uncorrected <path to reencoded, uncorrected input image>\n" "Description: Writes visualizations of the color space to the output image(s) ." "Also, if a path is provided, writes uncorrected bytes to an unmarked " "png, for comparison with the input image.\n"); SkCommandLineFlags::Parse(argc, argv); const char* input = FLAGS_input[0]; const char* output = FLAGS_output[0]; if (!input || !output) { SkCommandLineFlags::PrintUsage(); return -1; } sk_sp<SkData> data(SkData::MakeFromFileName(input)); if (!data) { SkDebugf("Cannot find input image.\n"); return -1; } std::unique_ptr<SkCodec> codec = nullptr; sk_sp<SkColorSpace> colorSpace = nullptr; if (FLAGS_icc) { colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size()); } else { codec = SkCodec::MakeFromData(data); colorSpace = sk_ref_sp(codec->getInfo().colorSpace()); SkDebugf("SkCodec would naturally decode as colorType=%s\n", sk_tool_utils::colortype_name(codec->getInfo().colorType())); } if (!colorSpace) { SkDebugf("Cannot create codec or icc profile from input file.\n"); return -1; } { SkColorSpaceTransferFn colorSpaceTransferFn; SkMatrix44 toXYZD50(SkMatrix44::kIdentity_Constructor); if (colorSpace->isNumericalTransferFn(&colorSpaceTransferFn) && colorSpace->toXYZD50(&toXYZD50)) { SkString description = SkICCGetColorProfileTag(colorSpaceTransferFn, toXYZD50); SkDebugf("Color Profile Description: \"%s\"\n", description.c_str()); } } // TODO: command line tweaking of this order int dimOrder[4] = {0, 1, 2, 3}; std::vector<std::string> outputFilenames; auto createOutputFilename = [output](const char* category, int index) -> std::string { std::stringstream ss; ss << output << '/' << category << '_' << index << ".png"; return ss.str(); }; if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()) { SkDebugf("XYZ/TRC color space\n"); // Load a graph of the CIE XYZ color gamut. SkBitmap gamutCanvasBitmap; if (!GetResourceAsBitmap("images/gamut.png", &gamutCanvasBitmap)) { SkDebugf("Program failure (could not load gamut.png).\n"); return -1; } OutputCanvas gamutCanvas(std::move(gamutCanvasBitmap)); // Draw the sRGB gamut if requested. if (FLAGS_sRGB_gamut) { sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB(); const SkMatrix44* mat = sRGBSpace->toXYZD50(); SkASSERT(mat); draw_gamut(gamutCanvas.canvas(), *mat, "sRGB", 0xFFFF9394, false); } // Draw the Adobe RGB gamut if requested. if (FLAGS_adobeRGB) { sk_sp<SkColorSpace> adobeRGBSpace = SkColorSpace::MakeRGB( SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kAdobeRGB_Gamut); const SkMatrix44* mat = adobeRGBSpace->toXYZD50(); SkASSERT(mat); draw_gamut(gamutCanvas.canvas(), *mat, "Adobe RGB", 0xFF31a9e1, false); } const SkMatrix44* mat = colorSpace->toXYZD50(); SkASSERT(mat); auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get()); draw_gamut(gamutCanvas.canvas(), *mat, input, 0xFF000000, true); if (!gamutCanvas.save(&outputFilenames, createOutputFilename("gamut", 0))) { return -1; } OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight)); if (FLAGS_sRGB_gamma) { draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394); } draw_transfer_fn(gammaCanvas.canvas(), colorSpace->gammaNamed(), xyz->gammas(), 0xFF000000); if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", 0))) { return -1; } } else { SkDebugf("A2B color space"); SkColorSpace_A2B* a2b = static_cast<SkColorSpace_A2B*>(colorSpace.get()); SkDebugf("Conversion type: "); switch (a2b->iccType()) { case SkColorSpace::kRGB_Type: SkDebugf("RGB"); break; case SkColorSpace::kCMYK_Type: SkDebugf("CMYK"); break; case SkColorSpace::kGray_Type: SkDebugf("Gray"); break; default: SkASSERT(false); break; } SkDebugf(" -> "); switch (a2b->pcs()) { case SkColorSpace_A2B::PCS::kXYZ: SkDebugf("XYZ\n"); break; case SkColorSpace_A2B::PCS::kLAB: SkDebugf("LAB\n"); break; } int clutCount = 0; int gammaCount = 0; for (int i = 0; i < a2b->count(); ++i) { const SkColorSpace_A2B::Element& e = a2b->element(i); switch (e.type()) { case SkColorSpace_A2B::Element::Type::kGammaNamed: { OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight)); if (FLAGS_sRGB_gamma) { draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394); } draw_transfer_fn(gammaCanvas.canvas(), e.gammaNamed(), nullptr, 0xFF000000); if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", gammaCount++))) { return -1; } } break; case SkColorSpace_A2B::Element::Type::kGammas: { OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight)); if (FLAGS_sRGB_gamma) { draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394); } draw_transfer_fn(gammaCanvas.canvas(), kNonStandard_SkGammaNamed, &e.gammas(), 0xFF000000); if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", gammaCount++))) { return -1; } } break; case SkColorSpace_A2B::Element::Type::kCLUT: { const SkColorLookUpTable& clut = e.colorLUT(); const int cutSize = cut_size(clut, dimOrder); const int clutWidth = clut.inputChannels() >= 3 ? kClutCanvasSize : 2 * kClutGap + cutSize; const int clutHeight = clut.inputChannels() >= 4 ? kClutCanvasSize : 2 * kClutGap + cutSize; OutputCanvas clutCanvas(transparentBitmap(clutWidth, clutHeight)); draw_clut(clutCanvas.canvas(), e.colorLUT(), dimOrder); if (!clutCanvas.save(&outputFilenames, createOutputFilename("clut", clutCount++))) { return -1; } } break; case SkColorSpace_A2B::Element::Type::kMatrix: dump_matrix(e.matrix()); break; } } } // marker to tell the web-tool the names of all images output SkDebugf("=========\n"); for (const std::string& filename : outputFilenames) { SkDebugf("%s\n", filename.c_str()); } if (!FLAGS_icc) { SkDebugf("%s\n", input); } // Also, if requested, decode and reencode the uncorrected input image. if (!FLAGS_uncorrected.isEmpty() && !FLAGS_icc) { SkBitmap bitmap; int width = codec->getInfo().width(); int height = codec->getInfo().height(); bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType()); SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType); if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes())) { SkDebugf("Could not decode input image.\n"); return -1; } sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG, 100); if (!out) { SkDebugf("Failed to encode uncorrected image.\n"); return -1; } SkFILEWStream bitmapStream(FLAGS_uncorrected[0]); if (!bitmapStream.write(out->data(), out->size())) { SkDebugf("Failed to write uncorrected image output.\n"); return -1; } SkDebugf("%s\n", FLAGS_uncorrected[0]); } return 0; }