/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkColor.h" #include "include/core/SkColorSpace.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMallocPixelRef.h" #include "include/core/SkPixelRef.h" #include "include/core/SkPixmap.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkTypes.h" #include "include/private/SkFloatingPoint.h" #include "include/utils/SkRandom.h" #include "tests/Test.h" #include "tools/ToolUtils.h" #include static void test_peekpixels(skiatest::Reporter* reporter) { const SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10); SkPixmap pmap; SkBitmap bm; // empty should return false REPORTER_ASSERT(reporter, !bm.peekPixels(nullptr)); REPORTER_ASSERT(reporter, !bm.peekPixels(&pmap)); // no pixels should return false bm.setInfo(SkImageInfo::MakeN32Premul(10, 10)); REPORTER_ASSERT(reporter, !bm.peekPixels(nullptr)); REPORTER_ASSERT(reporter, !bm.peekPixels(&pmap)); // real pixels should return true bm.allocPixels(info); REPORTER_ASSERT(reporter, bm.peekPixels(nullptr)); REPORTER_ASSERT(reporter, bm.peekPixels(&pmap)); REPORTER_ASSERT(reporter, pmap.info() == bm.info()); REPORTER_ASSERT(reporter, pmap.addr() == bm.getPixels()); REPORTER_ASSERT(reporter, pmap.rowBytes() == bm.rowBytes()); } // https://code.google.com/p/chromium/issues/detail?id=446164 static void test_bigalloc(skiatest::Reporter* reporter) { const int width = 0x40000001; const int height = 0x00000096; const SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); SkBitmap bm; REPORTER_ASSERT(reporter, !bm.tryAllocPixels(info)); sk_sp pr = SkMallocPixelRef::MakeAllocate(info, info.minRowBytes()); REPORTER_ASSERT(reporter, !pr); } static void test_allocpixels(skiatest::Reporter* reporter) { const int width = 10; const int height = 10; const SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); const size_t explicitRowBytes = info.minRowBytes() + 24; SkBitmap bm; bm.setInfo(info); REPORTER_ASSERT(reporter, info.minRowBytes() == bm.rowBytes()); bm.allocPixels(); REPORTER_ASSERT(reporter, info.minRowBytes() == bm.rowBytes()); bm.reset(); bm.allocPixels(info); REPORTER_ASSERT(reporter, info.minRowBytes() == bm.rowBytes()); bm.setInfo(info, explicitRowBytes); REPORTER_ASSERT(reporter, explicitRowBytes == bm.rowBytes()); bm.allocPixels(); REPORTER_ASSERT(reporter, explicitRowBytes == bm.rowBytes()); bm.reset(); bm.allocPixels(info, explicitRowBytes); REPORTER_ASSERT(reporter, explicitRowBytes == bm.rowBytes()); bm.reset(); bm.setInfo(info, 0); REPORTER_ASSERT(reporter, info.minRowBytes() == bm.rowBytes()); bm.reset(); bm.allocPixels(info, 0); REPORTER_ASSERT(reporter, info.minRowBytes() == bm.rowBytes()); bm.reset(); bool success = bm.setInfo(info, info.minRowBytes() - 1); // invalid for 32bit REPORTER_ASSERT(reporter, !success); REPORTER_ASSERT(reporter, bm.isNull()); for (SkColorType ct : { kAlpha_8_SkColorType, kRGB_565_SkColorType, kARGB_4444_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType, kRGB_888x_SkColorType, kRGBA_1010102_SkColorType, kRGB_101010x_SkColorType, kGray_8_SkColorType, kRGBA_F16Norm_SkColorType, kRGBA_F16_SkColorType, kRGBA_F32_SkColorType, kR8G8_unorm_SkColorType, kA16_unorm_SkColorType, kR16G16_unorm_SkColorType, kA16_float_SkColorType, kR16G16_float_SkColorType, kR16G16B16A16_unorm_SkColorType, }) { SkImageInfo imageInfo = info.makeColorType(ct); for (int rowBytesPadding = 1; rowBytesPadding <= 17; rowBytesPadding++) { bm.reset(); success = bm.setInfo(imageInfo, imageInfo.minRowBytes() + rowBytesPadding); if (rowBytesPadding % imageInfo.bytesPerPixel() == 0) { REPORTER_ASSERT(reporter, success); success = bm.tryAllocPixels(); REPORTER_ASSERT(reporter, success); } else { // Not pixel aligned. REPORTER_ASSERT(reporter, !success); REPORTER_ASSERT(reporter, bm.isNull()); } } } } static void test_bigwidth(skiatest::Reporter* reporter) { SkBitmap bm; int width = 1 << 29; // *4 will be the high-bit of 32bit int SkImageInfo info = SkImageInfo::MakeA8(width, 1); REPORTER_ASSERT(reporter, bm.setInfo(info)); REPORTER_ASSERT(reporter, bm.setInfo(info.makeColorType(kRGB_565_SkColorType))); // for a 4-byte config, this width will compute a rowbytes of 0x80000000, // which does not fit in a int32_t. setConfig should detect this, and fail. // TODO: perhaps skia can relax this, and only require that rowBytes fit // in a uint32_t (or larger), but for now this is the constraint. REPORTER_ASSERT(reporter, !bm.setInfo(info.makeColorType(kN32_SkColorType))); } DEF_TEST(Bitmap, reporter) { // Zero-sized bitmaps are allowed for (int width = 0; width < 2; ++width) { for (int height = 0; height < 2; ++height) { SkBitmap bm; bool setConf = bm.setInfo(SkImageInfo::MakeN32Premul(width, height)); REPORTER_ASSERT(reporter, setConf); if (setConf) { bm.allocPixels(); } REPORTER_ASSERT(reporter, SkToBool(width & height) != bm.empty()); } } test_bigwidth(reporter); test_allocpixels(reporter); test_bigalloc(reporter); test_peekpixels(reporter); } /** * This test checks that getColor works for both swizzles. */ DEF_TEST(Bitmap_getColor_Swizzle, r) { SkBitmap source; source.allocN32Pixels(1,1); source.eraseColor(SK_ColorRED); SkColorType colorTypes[] = { kRGBA_8888_SkColorType, kBGRA_8888_SkColorType, }; for (SkColorType ct : colorTypes) { SkBitmap copy; if (!ToolUtils::copy_to(©, ct, source)) { ERRORF(r, "SkBitmap::copy failed %d", (int)ct); continue; } REPORTER_ASSERT(r, source.getColor(0, 0) == copy.getColor(0, 0)); } } static void test_erasecolor_premul(skiatest::Reporter* reporter, SkColorType ct, SkColor input, SkColor expected) { SkBitmap bm; bm.allocPixels(SkImageInfo::Make(1, 1, ct, kPremul_SkAlphaType)); bm.eraseColor(input); INFOF(reporter, "expected: %x actual: %x\n", expected, bm.getColor(0, 0)); REPORTER_ASSERT(reporter, bm.getColor(0, 0) == expected); } /** * This test checks that eraseColor premultiplies the color correctly. */ DEF_TEST(Bitmap_eraseColor_Premul, r) { SkColor color = 0x80FF0080; test_erasecolor_premul(r, kAlpha_8_SkColorType, color, 0x80000000); test_erasecolor_premul(r, kRGB_565_SkColorType, color, 0xFF840042); test_erasecolor_premul(r, kARGB_4444_SkColorType, color, 0x88FF0080); test_erasecolor_premul(r, kRGBA_8888_SkColorType, color, color); test_erasecolor_premul(r, kBGRA_8888_SkColorType, color, color); } // Test that SkBitmap::ComputeOpaque() is correct for various colortypes. DEF_TEST(Bitmap_compute_is_opaque, r) { for (int i = 1; i <= kLastEnum_SkColorType; ++i) { SkColorType ct = (SkColorType) i; SkBitmap bm; SkAlphaType at = SkColorTypeIsAlwaysOpaque(ct) ? kOpaque_SkAlphaType : kPremul_SkAlphaType; bm.allocPixels(SkImageInfo::Make(13, 17, ct, at)); bm.eraseColor(SkColorSetARGB(255, 10, 20, 30)); REPORTER_ASSERT(r, SkBitmap::ComputeIsOpaque(bm)); bm.eraseColor(SkColorSetARGB(128, 255, 255, 255)); bool isOpaque = SkBitmap::ComputeIsOpaque(bm); bool shouldBeOpaque = (at == kOpaque_SkAlphaType); REPORTER_ASSERT(r, isOpaque == shouldBeOpaque); } } // Test that erase+getColor round trips with RGBA_F16 pixels. DEF_TEST(Bitmap_erase_f16_erase_getColor, r) { SkRandom random; SkPixmap pm; SkBitmap bm; bm.allocPixels(SkImageInfo::Make(1, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType)); REPORTER_ASSERT(r, bm.peekPixels(&pm)); for (unsigned i = 0; i < 0x100; ++i) { // Test all possible values of blue component. SkColor color1 = (SkColor)((random.nextU() & 0xFFFFFF00) | i); // Test all possible values of alpha component. SkColor color2 = (SkColor)((random.nextU() & 0x00FFFFFF) | (i << 24)); for (SkColor color : {color1, color2}) { pm.erase(color); if (SkColorGetA(color) != 0) { REPORTER_ASSERT(r, color == pm.getColor(0, 0)); } else { REPORTER_ASSERT(r, 0 == SkColorGetA(pm.getColor(0, 0))); } } } } // Verify that SkBitmap::erase erases in SRGB, regardless of the SkColorSpace of the // SkBitmap. DEF_TEST(Bitmap_erase_srgb, r) { SkBitmap bm; // Use a color spin from SRGB. bm.allocPixels(SkImageInfo::Make(1, 1, kN32_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()->makeColorSpin())); // RED will be converted into the spun color space. bm.eraseColor(SK_ColorRED); // getColor doesn't take the color space into account, so the returned color // is different due to the color spin. REPORTER_ASSERT(r, bm.getColor(0, 0) == SK_ColorBLUE); } // Make sure that the bitmap remains valid when pixelref is removed. DEF_TEST(Bitmap_clear_pixelref_keep_info, r) { SkBitmap bm; bm.allocPixels(SkImageInfo::MakeN32Premul(100,100)); bm.setPixelRef(nullptr, 0, 0); SkDEBUGCODE(bm.validate();) } // At the time of writing, SkBitmap::erase() works when the color is zero for all formats, // but some formats failed when the color is non-zero! DEF_TEST(Bitmap_erase, r) { SkColorType colorTypes[] = { kRGB_565_SkColorType, kARGB_4444_SkColorType, kRGB_888x_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType, kRGB_101010x_SkColorType, kRGBA_1010102_SkColorType, }; for (SkColorType ct : colorTypes) { SkImageInfo info = SkImageInfo::Make(1,1, (SkColorType)ct, kPremul_SkAlphaType); SkBitmap bm; bm.allocPixels(info); bm.eraseColor(0x00000000); if (SkColorTypeIsAlwaysOpaque(ct)) { REPORTER_ASSERT(r, bm.getColor(0,0) == 0xff000000); } else { REPORTER_ASSERT(r, bm.getColor(0,0) == 0x00000000); } bm.eraseColor(0xaabbccdd); REPORTER_ASSERT(r, bm.getColor(0,0) != 0xff000000); REPORTER_ASSERT(r, bm.getColor(0,0) != 0x00000000); } } static void check_alphas(skiatest::Reporter* reporter, const SkBitmap& bm, bool (*pred)(float expected, float actual), SkColorType ct) { SkASSERT(bm.width() == 16); SkASSERT(bm.height() == 16); int alpha = 0; for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { float expected = alpha / 255.0f; float actual = bm.getAlphaf(x, y); if (!pred(expected, actual)) { ERRORF(reporter, "%s: got %g, want %g\n", ToolUtils::colortype_name(ct), actual, expected); } alpha += 1; } } } static bool unit_compare(float expected, float actual, float tol = 1.0f/(1<<12)) { SkASSERT(expected >= 0 && expected <= 1); SkASSERT( actual >= 0 && actual <= 1); if (expected == 0 || expected == 1) { return actual == expected; } else { return SkScalarNearlyEqual(expected, actual, tol); } } static float unit_discretize(float value, float scale) { SkASSERT(value >= 0 && value <= 1); if (value == 1) { return 1; } else { return sk_float_floor(value * scale + 0.5f) / scale; } } DEF_TEST(getalphaf, reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(16, 16); SkBitmap bm; bm.allocPixels(info); int alpha = 0; for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { *bm.getAddr32(x, y) = alpha++ << 24; } } auto nearly = [](float expected, float actual) -> bool { return unit_compare(expected, actual); }; auto nearly4bit = [](float expected, float actual) -> bool { expected = unit_discretize(expected, 15); return unit_compare(expected, actual); }; auto nearly2bit = [](float expected, float actual) -> bool { expected = unit_discretize(expected, 3); return unit_compare(expected, actual); }; auto opaque = [](float expected, float actual) -> bool { return actual == 1.0f; }; auto nearly_half = [](float expected, float actual) -> bool { return unit_compare(expected, actual, 1.0f/(1<<10)); }; const struct { SkColorType fColorType; bool (*fPred)(float, float); } recs[] = { { kRGB_565_SkColorType, opaque }, { kGray_8_SkColorType, opaque }, { kR8G8_unorm_SkColorType, opaque }, { kR16G16_unorm_SkColorType, opaque }, { kR16G16_float_SkColorType, opaque }, { kRGB_888x_SkColorType, opaque }, { kRGB_101010x_SkColorType, opaque }, { kAlpha_8_SkColorType, nearly }, { kA16_unorm_SkColorType, nearly }, { kA16_float_SkColorType, nearly_half }, { kRGBA_8888_SkColorType, nearly }, { kBGRA_8888_SkColorType, nearly }, { kR16G16B16A16_unorm_SkColorType, nearly }, { kRGBA_F16_SkColorType, nearly_half }, { kRGBA_F32_SkColorType, nearly }, { kRGBA_1010102_SkColorType, nearly2bit }, { kARGB_4444_SkColorType, nearly4bit }, }; for (const auto& rec : recs) { SkBitmap tmp; tmp.allocPixels(bm.info().makeColorType(rec.fColorType)); if (bm.readPixels(tmp.pixmap())) { check_alphas(reporter, tmp, rec.fPred, rec.fColorType); } else { SkDebugf("can't readpixels\n"); } } } /* computeByteSize() is documented to return 0 if height is zero, but does not * special-case width==0, so computeByteSize() can return non-zero for that * (since it is defined to return (height-1)*rb + ... * * Test that allocPixels() respects this, and allocates a buffer as large as * computeByteSize()... even though the bitmap is logicallly empty. */ DEF_TEST(bitmap_zerowidth_crbug_1103827, reporter) { const size_t big_rb = 1 << 16; struct { int width, height; size_t rowbytes, expected_size; } rec[] = { { 2, 0, big_rb, 0 }, // zero-height means zero-size { 0, 2, big_rb, big_rb }, // zero-width is computed normally }; for (const auto& r : rec) { auto info = SkImageInfo::Make(r.width, r.height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); size_t size = info.computeByteSize(r.rowbytes); REPORTER_ASSERT(reporter, size == r.expected_size); SkBitmap bm; bm.setInfo(info, r.rowbytes); REPORTER_ASSERT(reporter, size == bm.computeByteSize()); // Be sure we can actually write to that much memory. If the bitmap underallocated // the buffer, this should trash memory and crash (we hope). bm.allocPixels(); sk_bzero(bm.getPixels(), size); } }