/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkRandom.h" #include "src/core/SkGeometry.h" #include "src/gpu/geometry/GrPathUtils.h" #include "tests/Test.h" static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) { return SkScalarNearlyZero((p0 - p1).cross(p2 - p1)); } static bool is_linear(const SkPoint p[4]) { return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]); } DEF_TEST(GrPathUtils_findCubicConvex180Chops, r) { // Test all combinations of corners from the square [0,0,1,1]. This gives us all kinds of // special cases for cusps, lines, loops, and inflections. for (int i = 0; i < (1 << 8); ++i) { SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1), SkPoint::Make((i>>2)&1, (i>>3)&1), SkPoint::Make((i>>4)&1, (i>>5)&1), SkPoint::Make((i>>6)&1, (i>>7)&1)}; float inflectT[2], convex180T[2]; if (int inflectN = SkFindCubicInflections(p, inflectT)) { // The curve has inflections. findCubicConvex180Chops should return the inflection // points. int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T); REPORTER_ASSERT(r, inflectN == convex180N); for (int i = 0; i < convex180N; ++i) { REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i])); } } else { float totalRotation = SkMeasureNonInflectCubicRotation(p); int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T); SkPoint chops[10]; SkChopCubicAt(p, chops, convex180T, convex180N); float radsSum = 0; for (int i = 0; i <= convex180N; ++i) { float rads = SkMeasureNonInflectCubicRotation(chops + i*3); SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero); radsSum += rads; } if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) { // The curve should never chop if rotation is <180 degrees. REPORTER_ASSERT(r, convex180N == 0); } else if (!is_linear(p)) { REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation)); if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) { REPORTER_ASSERT(r, convex180N == 1); // This works because cusps take the "inflection" path above, so we don't get // non-lilnear curves that lose rotation when chopped. REPORTER_ASSERT(r, SkScalarNearlyEqual( SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI)); REPORTER_ASSERT(r, SkScalarNearlyEqual( SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI)); } } } } // Now test an exact quadratic. SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}}; float T[2]; REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(quad, T) == 0); } DEF_TEST(GrPathUtils_convertToCubic, r) { SkPoint cubic[4]; GrPathUtils::convertLineToCubic({0,0}, {3,6}, cubic); REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 1)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 4)); REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(3,6)); SkPoint quad[3] = {{0,0}, {3,3}, {6,0}}; GrPathUtils::convertQuadToCubic(quad, cubic); REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 4)); REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 2)); REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(6,0)); }