/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkFontMetrics.h" #include "include/core/SkFontMgr.h" #include "include/core/SkImage.h" #include "include/core/SkMallocPixelRef.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkTextBlob.h" #include "include/core/SkTypeface.h" #include "include/effects/SkDashPathEffect.h" #include "include/effects/SkImageFilters.h" #include "include/effects/SkTableColorFilter.h" #include "include/private/SkFixed.h" #include "include/private/SkTemplates.h" #include "src/core/SkAnnotationKeys.h" #include "src/core/SkAutoMalloc.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkOSFile.h" #include "src/core/SkPicturePriv.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkWriteBuffer.h" #include "src/shaders/SkShaderBase.h" #include "tests/Test.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" static const uint32_t kArraySize = 64; static const int kBitmapSize = 256; class SerializationTest { public: template static void TestAlignment(T* testObj, skiatest::Reporter* reporter) { // Test memory read/write functions directly unsigned char dataWritten[1024]; size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten); REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory); size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory); REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory); } }; template struct SerializationUtils { // Generic case for flattenables static void Write(SkWriteBuffer& writer, const T* flattenable) { writer.writeFlattenable(flattenable); } static void Read(SkReadBuffer& reader, T** flattenable) { *flattenable = (T*)reader.readFlattenable(T::GetFlattenableType()); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) { writer.writeMatrix(*matrix); } static void Read(SkReadBuffer& reader, SkMatrix* matrix) { reader.readMatrix(matrix); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkPath* path) { writer.writePath(*path); } static void Read(SkReadBuffer& reader, SkPath* path) { reader.readPath(path); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkRegion* region) { writer.writeRegion(*region); } static void Read(SkReadBuffer& reader, SkRegion* region) { reader.readRegion(region); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkString* string) { writer.writeString(string->c_str()); } static void Read(SkReadBuffer& reader, SkString* string) { reader.readString(string); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) { writer.writeByteArray(data, arraySize); } static bool Read(SkReadBuffer& reader, unsigned char* data, uint32_t arraySize) { return reader.readByteArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) { writer.writeColorArray(data, arraySize); } static bool Read(SkReadBuffer& reader, SkColor* data, uint32_t arraySize) { return reader.readColorArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkColor4f* data, uint32_t arraySize) { writer.writeColor4fArray(data, arraySize); } static bool Read(SkReadBuffer& reader, SkColor4f* data, uint32_t arraySize) { return reader.readColor4fArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) { writer.writeIntArray(data, arraySize); } static bool Read(SkReadBuffer& reader, int32_t* data, uint32_t arraySize) { return reader.readIntArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) { writer.writePointArray(data, arraySize); } static bool Read(SkReadBuffer& reader, SkPoint* data, uint32_t arraySize) { return reader.readPointArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkPoint3* data) { writer.writePoint3(*data); } static void Read(SkReadBuffer& reader, SkPoint3* data) { reader.readPoint3(data); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) { writer.writeScalarArray(data, arraySize); } static bool Read(SkReadBuffer& reader, SkScalar* data, uint32_t arraySize) { return reader.readScalarArray(data, arraySize); } }; template struct SerializationTestUtils { static void InvalidateData(unsigned char* data) {} }; template<> struct SerializationTestUtils { static void InvalidateData(unsigned char* data) { data[3] |= 0x80; // Reverse sign of 1st integer } }; template static void TestObjectSerializationNoAlign(T* testObj, skiatest::Reporter* reporter) { SkBinaryWriteBuffer writer; SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); unsigned char dataWritten[1024]; writer.writeToMemory(dataWritten); SerializationTestUtils::InvalidateData(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkReadBuffer buffer(dataWritten, bytesWritten - 4); T obj; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); // Make sure this succeeds when it should SkReadBuffer buffer2(dataWritten, bytesWritten); size_t offsetBefore = buffer2.offset(); T obj2; SerializationUtils::Read(buffer2, &obj2); size_t offsetAfter = buffer2.offset(); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid() == !testInvalid); // Note: This following test should always succeed, regardless of whether the buffer is valid, // since if it is invalid, it will simply skip to the end, as if it had read the whole buffer. REPORTER_ASSERT(reporter, offsetAfter - offsetBefore == bytesWritten); } template static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) { TestObjectSerializationNoAlign(testObj, reporter); SerializationTest::TestAlignment(testObj, reporter); } template static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed, skiatest::Reporter* reporter) { SkBinaryWriteBuffer writer; SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); SkASSERT(bytesWritten <= 4096); unsigned char dataWritten[4096]; writer.writeToMemory(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkReadBuffer buffer(dataWritten, bytesWritten - 4); T* obj = nullptr; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, nullptr == obj); // Make sure this succeeds when it should SkReadBuffer buffer2(dataWritten, bytesWritten); const unsigned char* peekBefore = static_cast(buffer2.skip(0)); T* obj2 = nullptr; SerializationUtils::Read(buffer2, &obj2); const unsigned char* peekAfter = static_cast(buffer2.skip(0)); if (shouldSucceed) { // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid()); REPORTER_ASSERT(reporter, static_cast(peekAfter - peekBefore) == bytesWritten); REPORTER_ASSERT(reporter, obj2); } else { // If the deserialization was supposed to fail, make sure it did REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, nullptr == obj2); } return obj2; // Return object to perform further validity tests on it } template static void TestArraySerialization(T* data, skiatest::Reporter* reporter) { SkBinaryWriteBuffer writer; SerializationUtils::Write(writer, data, kArraySize); size_t bytesWritten = writer.bytesWritten(); // This should write the length (in 4 bytes) and the array REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten); unsigned char dataWritten[2048]; writer.writeToMemory(dataWritten); // Make sure this fails when it should SkReadBuffer buffer(dataWritten, bytesWritten); T dataRead[kArraySize]; bool success = SerializationUtils::Read(buffer, dataRead, kArraySize / 2); // This should have failed, since the provided size was too small REPORTER_ASSERT(reporter, !success); // Make sure this succeeds when it should SkReadBuffer buffer2(dataWritten, bytesWritten); success = SerializationUtils::Read(buffer2, dataRead, kArraySize); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, success); } static void TestBitmapSerialization(const SkBitmap& validBitmap, const SkBitmap& invalidBitmap, bool shouldSucceed, skiatest::Reporter* reporter) { sk_sp validImage(SkImage::MakeFromBitmap(validBitmap)); sk_sp validBitmapSource(SkImageFilters::Image(std::move(validImage))); sk_sp invalidImage(SkImage::MakeFromBitmap(invalidBitmap)); sk_sp invalidBitmapSource(SkImageFilters::Image(std::move(invalidImage))); sk_sp xfermodeImageFilter( SkImageFilters::Blend(SkBlendMode::kSrcOver, std::move(invalidBitmapSource), std::move(validBitmapSource), nullptr)); sk_sp deserializedFilter( TestFlattenableSerialization( xfermodeImageFilter.get(), shouldSucceed, reporter)); // Try to render a small bitmap using the invalid deserialized filter // to make sure we don't crash while trying to render it if (shouldSucceed) { SkBitmap bitmap; bitmap.allocN32Pixels(24, 24); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint paint; paint.setImageFilter(deserializedFilter); canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24))); canvas.drawBitmap(bitmap, 0, 0, &paint); } } static void TestColorFilterSerialization(skiatest::Reporter* reporter) { uint8_t table[256]; for (int i = 0; i < 256; ++i) { table[i] = (i * 41) % 256; } auto filter = SkTableColorFilter::Make(table); sk_sp copy( TestFlattenableSerialization(as_CFB(filter.get()), true, reporter)); } static SkBitmap draw_picture(SkPicture& picture) { SkBitmap bitmap; bitmap.allocN32Pixels(SkScalarCeilToInt(picture.cullRect().width()), SkScalarCeilToInt(picture.cullRect().height())); SkCanvas canvas(bitmap); picture.playback(&canvas); return bitmap; } static void compare_bitmaps(skiatest::Reporter* reporter, const SkBitmap& b1, const SkBitmap& b2) { REPORTER_ASSERT(reporter, b1.width() == b2.width()); REPORTER_ASSERT(reporter, b1.height() == b2.height()); if ((b1.width() != b2.width()) || (b1.height() != b2.height())) { return; } int pixelErrors = 0; for (int y = 0; y < b2.height(); ++y) { for (int x = 0; x < b2.width(); ++x) { if (b1.getColor(x, y) != b2.getColor(x, y)) ++pixelErrors; } } REPORTER_ASSERT(reporter, 0 == pixelErrors); } static sk_sp serialize_typeface_proc(SkTypeface* typeface, void* ctx) { // Write out typeface ID followed by entire typeface. SkDynamicMemoryWStream stream; sk_sp data(typeface->serialize(SkTypeface::SerializeBehavior::kDoIncludeData)); uint32_t typeface_id = typeface->uniqueID(); stream.write(&typeface_id, sizeof(typeface_id)); stream.write(data->data(), data->size()); return stream.detachAsData(); } static sk_sp deserialize_typeface_proc(const void* data, size_t length, void* ctx) { SkStream* stream; if (length < sizeof(stream)) { return nullptr; } memcpy(&stream, data, sizeof(stream)); SkFontID id; if (!stream->read(&id, sizeof(id))) { return nullptr; } sk_sp typeface = SkTypeface::MakeDeserialize(stream); return typeface; } static void serialize_and_compare_typeface(sk_sp typeface, const char* text, const SkSerialProcs* serial_procs, const SkDeserialProcs* deserial_procs, skiatest::Reporter* reporter) { // Create a font with the typeface. SkPaint paint; paint.setColor(SK_ColorGRAY); SkFont font(std::move(typeface), 30); // Paint some text. SkPictureRecorder recorder; SkIRect canvasRect = SkIRect::MakeWH(kBitmapSize, kBitmapSize); SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(canvasRect.width()), SkIntToScalar(canvasRect.height())); canvas->drawColor(SK_ColorWHITE); canvas->drawString(text, 24, 32, font, paint); sk_sp picture(recorder.finishRecordingAsPicture()); // Serlialize picture and create its clone from stream. SkDynamicMemoryWStream stream; picture->serialize(&stream, serial_procs); std::unique_ptr inputStream(stream.detachAsStream()); sk_sp loadedPicture(SkPicture::MakeFromStream(inputStream.get(), deserial_procs)); // Draw both original and clone picture and compare bitmaps -- they should be identical. SkBitmap origBitmap = draw_picture(*picture); SkBitmap destBitmap = draw_picture(*loadedPicture); compare_bitmaps(reporter, origBitmap, destBitmap); } static sk_sp makeDistortableWithNonDefaultAxes(skiatest::Reporter* reporter) { std::unique_ptr distortable(GetResourceAsStream("fonts/Distortable.ttf")); if (!distortable) { REPORT_FAILURE(reporter, "distortable", SkString()); return nullptr; } const SkFontArguments::VariationPosition::Coordinate position[] = { { SkSetFourByteTag('w','g','h','t'), SK_ScalarSqrt2 }, }; SkFontArguments params; params.setVariationDesignPosition({position, SK_ARRAY_COUNT(position)}); sk_sp fm = SkFontMgr::RefDefault(); sk_sp typeface = fm->makeFromStream(std::move(distortable), params); if (!typeface) { return nullptr; // Not all SkFontMgr can makeFromStream(). } int count = typeface->getVariationDesignPosition(nullptr, 0); if (count == -1) { return nullptr; // The number of axes is unknown. } return typeface; } static void TestPictureTypefaceSerialization(const SkSerialProcs* serial_procs, const SkDeserialProcs* deserial_procs, skiatest::Reporter* reporter) { { // Load typeface from file to test CreateFromFile with index. auto typeface = MakeResourceAsTypeface("fonts/test.ttc", 1); if (!typeface) { INFOF(reporter, "Could not run fontstream test because test.ttc not found."); } else { serialize_and_compare_typeface(std::move(typeface), "A!", serial_procs, deserial_procs, reporter); } } { // Load typeface as stream to create with axis settings. auto typeface = makeDistortableWithNonDefaultAxes(reporter); if (!typeface) { INFOF(reporter, "Could not run fontstream test because Distortable.ttf not created."); } else { serialize_and_compare_typeface(std::move(typeface), "ab", serial_procs, deserial_procs, reporter); } } } static void TestTypefaceSerialization(skiatest::Reporter* reporter, sk_sp typeface) { SkDynamicMemoryWStream typefaceWStream; typeface->serialize(&typefaceWStream); std::unique_ptr typefaceStream = typefaceWStream.detachAsStream(); sk_sp cloneTypeface = SkTypeface::MakeDeserialize(typefaceStream.get()); SkASSERT(cloneTypeface); SkFont font(typeface, 12); SkFont clone(cloneTypeface, 12); SkFontMetrics fontMetrics, cloneMetrics; font.getMetrics(&fontMetrics); clone.getMetrics(&cloneMetrics); REPORTER_ASSERT(reporter, fontMetrics == cloneMetrics); REPORTER_ASSERT(reporter, typeface->countGlyphs() == cloneTypeface->countGlyphs()); REPORTER_ASSERT(reporter, typeface->fontStyle() == cloneTypeface->fontStyle()); } DEF_TEST(Serialization_Typeface, reporter) { SkFont font; TestTypefaceSerialization(reporter, font.refTypefaceOrDefault()); TestTypefaceSerialization(reporter, ToolUtils::sample_user_typeface()); } static void setup_bitmap_for_canvas(SkBitmap* bitmap) { bitmap->allocN32Pixels(kBitmapSize, kBitmapSize); } static void make_checkerboard_bitmap(SkBitmap& bitmap) { setup_bitmap_for_canvas(&bitmap); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int i = kBitmapSize / 8; const SkScalar f = SkIntToScalar(i); for (int y = 0; y < kBitmapSize; y += i) { for (int x = 0; x < kBitmapSize; x += i) { canvas.save(); canvas.translate(SkIntToScalar(x), SkIntToScalar(y)); canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint); canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint); canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint); canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint); canvas.restore(); } } } static void draw_something(SkCanvas* canvas) { SkPaint paint; SkBitmap bitmap; make_checkerboard_bitmap(bitmap); canvas->save(); canvas->scale(0.5f, 0.5f); canvas->drawBitmap(bitmap, 0, 0, nullptr); canvas->restore(); paint.setAntiAlias(true); paint.setColor(SK_ColorRED); canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint); paint.setColor(SK_ColorBLACK); SkFont font; font.setSize(kBitmapSize/3); canvas->drawString("Picture", SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), font, paint); } static sk_sp render(const SkPicture& p) { auto surf = SkSurface::MakeRasterN32Premul(SkScalarRoundToInt(p.cullRect().width()), SkScalarRoundToInt(p.cullRect().height())); if (!surf) { return nullptr; // bounds are empty? } surf->getCanvas()->clear(SK_ColorWHITE); p.playback(surf->getCanvas()); return surf->makeImageSnapshot(); } DEF_TEST(Serialization, reporter) { // Test matrix serialization { SkMatrix matrix = SkMatrix::I(); TestObjectSerialization(&matrix, reporter); } // Test point3 serialization { SkPoint3 point; TestObjectSerializationNoAlign(&point, reporter); } // Test path serialization { SkPath path; TestObjectSerialization(&path, reporter); } // Test region serialization { SkRegion region; TestObjectSerialization(®ion, reporter); } // Test color filter serialization { TestColorFilterSerialization(reporter); } // Test string serialization { SkString string("string"); TestObjectSerializationNoAlign(&string, reporter); TestObjectSerializationNoAlign(&string, reporter); } // Test rrect serialization { // SkRRect does not initialize anything. // An uninitialized SkRRect can be serialized, // but will branch on uninitialized data when deserialized. SkRRect rrect; SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30); SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} }; rrect.setRectRadii(rect, corners); SerializationTest::TestAlignment(&rrect, reporter); } // Test readByteArray { unsigned char data[kArraySize] = { 1, 2, 3 }; TestArraySerialization(data, reporter); } // Test readColorArray { SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED }; TestArraySerialization(data, reporter); } // Test readColor4fArray { SkColor4f data[kArraySize] = { SkColor4f::FromColor(SK_ColorBLACK), SkColor4f::FromColor(SK_ColorWHITE), SkColor4f::FromColor(SK_ColorRED), { 1.f, 2.f, 4.f, 8.f } }; TestArraySerialization(data, reporter); } // Test readIntArray { int32_t data[kArraySize] = { 1, 2, 4, 8 }; TestArraySerialization(data, reporter); } // Test readPointArray { SkPoint data[kArraySize] = { {6, 7}, {42, 128} }; TestArraySerialization(data, reporter); } // Test readScalarArray { SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax }; TestArraySerialization(data, reporter); } // Test skipByteArray { // Valid case with non-empty array: { unsigned char data[kArraySize] = { 1, 2, 3 }; SkBinaryWriteBuffer writer; writer.writeByteArray(data, kArraySize); SkAutoMalloc buf(writer.bytesWritten()); writer.writeToMemory(buf.get()); SkReadBuffer reader(buf.get(), writer.bytesWritten()); size_t len = ~0; const void* arr = reader.skipByteArray(&len); REPORTER_ASSERT(reporter, arr); REPORTER_ASSERT(reporter, len == kArraySize); REPORTER_ASSERT(reporter, memcmp(arr, data, len) == 0); } // Writing a zero length array (can be detected as valid by non-nullptr return): { SkBinaryWriteBuffer writer; writer.writeByteArray(nullptr, 0); SkAutoMalloc buf(writer.bytesWritten()); writer.writeToMemory(buf.get()); SkReadBuffer reader(buf.get(), writer.bytesWritten()); size_t len = ~0; const void* arr = reader.skipByteArray(&len); REPORTER_ASSERT(reporter, arr); REPORTER_ASSERT(reporter, len == 0); } // If the array can't be safely read, should return nullptr: { SkBinaryWriteBuffer writer; writer.writeUInt(kArraySize); SkAutoMalloc buf(writer.bytesWritten()); writer.writeToMemory(buf.get()); SkReadBuffer reader(buf.get(), writer.bytesWritten()); size_t len = ~0; const void* arr = reader.skipByteArray(&len); REPORTER_ASSERT(reporter, !arr); REPORTER_ASSERT(reporter, len == 0); } } // Test invalid deserializations { SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize); SkBitmap validBitmap; validBitmap.setInfo(info); // Create a bitmap with a really large height SkBitmap invalidBitmap; invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000)); // The deserialization should succeed, and the rendering shouldn't crash, // even when the device fails to initialize, due to its size TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter); } // Test simple SkPicture serialization { SkPictureRecorder recorder; draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize))); sk_sp pict(recorder.finishRecordingAsPicture()); // Serialize picture SkBinaryWriteBuffer writer; SkPicturePriv::Flatten(pict, writer); size_t size = writer.bytesWritten(); SkAutoTMalloc data(size); writer.writeToMemory(static_cast(data.get())); // Deserialize picture SkReadBuffer reader(static_cast(data.get()), size); sk_sp readPict(SkPicturePriv::MakeFromBuffer(reader)); REPORTER_ASSERT(reporter, reader.isValid()); REPORTER_ASSERT(reporter, readPict.get()); sk_sp img0 = render(*pict); sk_sp img1 = render(*readPict); if (img0 && img1) { REPORTER_ASSERT(reporter, ToolUtils::equal_pixels(img0.get(), img1.get())); } } TestPictureTypefaceSerialization(nullptr, nullptr, reporter); SkSerialProcs serial_procs; serial_procs.fTypefaceProc = serialize_typeface_proc; SkDeserialProcs deserial_procs; deserial_procs.fTypefaceProc = deserialize_typeface_proc; TestPictureTypefaceSerialization(&serial_procs, &deserial_procs, reporter); } /////////////////////////////////////////////////////////////////////////////////////////////////// #include "include/core/SkAnnotation.h" static sk_sp copy_picture_via_serialization(SkPicture* src) { SkDynamicMemoryWStream wstream; src->serialize(&wstream); std::unique_ptr rstream(wstream.detachAsStream()); return SkPicture::MakeFromStream(rstream.get()); } struct AnnotationRec { const SkRect fRect; const char* fKey; sk_sp fValue; }; class TestAnnotationCanvas : public SkCanvas { skiatest::Reporter* fReporter; const AnnotationRec* fRec; int fCount; int fCurrIndex; public: TestAnnotationCanvas(skiatest::Reporter* reporter, const AnnotationRec rec[], int count) : SkCanvas(100, 100) , fReporter(reporter) , fRec(rec) , fCount(count) , fCurrIndex(0) {} ~TestAnnotationCanvas() override { REPORTER_ASSERT(fReporter, fCount == fCurrIndex); } protected: void onDrawAnnotation(const SkRect& rect, const char key[], SkData* value) override { REPORTER_ASSERT(fReporter, fCurrIndex < fCount); REPORTER_ASSERT(fReporter, rect == fRec[fCurrIndex].fRect); REPORTER_ASSERT(fReporter, !strcmp(key, fRec[fCurrIndex].fKey)); REPORTER_ASSERT(fReporter, value->equals(fRec[fCurrIndex].fValue.get())); fCurrIndex += 1; } }; /* * Test the 3 annotation types by recording them into a picture, serializing, and then playing * them back into another canvas. */ DEF_TEST(Annotations, reporter) { SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeWH(100, 100)); const char* str0 = "rect-with-url"; const SkRect r0 = SkRect::MakeWH(10, 10); sk_sp d0(SkData::MakeWithCString(str0)); SkAnnotateRectWithURL(recordingCanvas, r0, d0.get()); const char* str1 = "named-destination"; const SkRect r1 = SkRect::MakeXYWH(5, 5, 0, 0); // collapsed to a point sk_sp d1(SkData::MakeWithCString(str1)); SkAnnotateNamedDestination(recordingCanvas, {r1.x(), r1.y()}, d1.get()); const char* str2 = "link-to-destination"; const SkRect r2 = SkRect::MakeXYWH(20, 20, 5, 6); sk_sp d2(SkData::MakeWithCString(str2)); SkAnnotateLinkToDestination(recordingCanvas, r2, d2.get()); const AnnotationRec recs[] = { { r0, SkAnnotationKeys::URL_Key(), std::move(d0) }, { r1, SkAnnotationKeys::Define_Named_Dest_Key(), std::move(d1) }, { r2, SkAnnotationKeys::Link_Named_Dest_Key(), std::move(d2) }, }; sk_sp pict0(recorder.finishRecordingAsPicture()); sk_sp pict1(copy_picture_via_serialization(pict0.get())); TestAnnotationCanvas canvas(reporter, recs, SK_ARRAY_COUNT(recs)); canvas.drawPicture(pict1); } DEF_TEST(WriteBuffer_storage, reporter) { enum { kSize = 32 }; int32_t storage[kSize/4]; char src[kSize]; sk_bzero(src, kSize); SkBinaryWriteBuffer writer(storage, kSize); REPORTER_ASSERT(reporter, writer.usingInitialStorage()); REPORTER_ASSERT(reporter, writer.bytesWritten() == 0); writer.write(src, kSize - 4); REPORTER_ASSERT(reporter, writer.usingInitialStorage()); REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize - 4); writer.writeInt(0); REPORTER_ASSERT(reporter, writer.usingInitialStorage()); REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize); writer.reset(storage, kSize-4); REPORTER_ASSERT(reporter, writer.usingInitialStorage()); REPORTER_ASSERT(reporter, writer.bytesWritten() == 0); writer.write(src, kSize - 4); REPORTER_ASSERT(reporter, writer.usingInitialStorage()); REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize - 4); writer.writeInt(0); REPORTER_ASSERT(reporter, !writer.usingInitialStorage()); // this is the change REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize); } DEF_TEST(WriteBuffer_external_memory_textblob, reporter) { SkFont font; font.setTypeface(SkTypeface::MakeDefault()); SkTextBlobBuilder builder; int glyph_count = 5; const auto& run = builder.allocRun(font, glyph_count, 1.2f, 2.3f); // allocRun() allocates only the glyph buffer. std::fill(run.glyphs, run.glyphs + glyph_count, 0); auto blob = builder.make(); SkSerialProcs procs; SkAutoTMalloc storage; size_t blob_size = 0u; size_t storage_size = 0u; blob_size = SkAlign4(blob->serialize(procs)->size()); REPORTER_ASSERT(reporter, blob_size > 4u); storage_size = blob_size - 4; storage.realloc(storage_size); REPORTER_ASSERT(reporter, blob->serialize(procs, storage.get(), storage_size) == 0u); storage_size = blob_size; storage.realloc(storage_size); REPORTER_ASSERT(reporter, blob->serialize(procs, storage.get(), storage_size) != 0u); } DEF_TEST(WriteBuffer_external_memory_flattenable, reporter) { SkScalar intervals[] = {1.f, 1.f}; auto path_effect = SkDashPathEffect::Make(intervals, 2, 0); size_t path_size = SkAlign4(path_effect->serialize()->size()); REPORTER_ASSERT(reporter, path_size > 4u); SkAutoTMalloc storage; size_t storage_size = path_size - 4; storage.realloc(storage_size); REPORTER_ASSERT(reporter, path_effect->serialize(storage.get(), storage_size) == 0u); storage_size = path_size; storage.realloc(storage_size); REPORTER_ASSERT(reporter, path_effect->serialize(storage.get(), storage_size) != 0u); } DEF_TEST(ReadBuffer_empty, reporter) { SkBinaryWriteBuffer writer; writer.writeInt(123); writer.writeDataAsByteArray(SkData::MakeEmpty().get()); writer.writeInt(321); size_t size = writer.bytesWritten(); SkAutoMalloc storage(size); writer.writeToMemory(storage.get()); SkReadBuffer reader(storage.get(), size); REPORTER_ASSERT(reporter, reader.readInt() == 123); auto data = reader.readByteArrayAsData(); REPORTER_ASSERT(reporter, data->size() == 0); REPORTER_ASSERT(reporter, reader.readInt() == 321); }