/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "dm/DMJsonWriter.h" #include "dm/DMSrcSink.h" #include "gm/verifiers/gmverifier.h" #include "include/codec/SkCodec.h" #include "include/core/SkBBHFactory.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkData.h" #include "include/core/SkDocument.h" #include "include/core/SkFontMgr.h" #include "include/core/SkGraphics.h" #include "include/ports/SkTypeface_win.h" #include "include/private/SkChecksum.h" #include "include/private/SkHalf.h" #include "include/private/SkSpinlock.h" #include "include/private/SkTHash.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkLeanWindows.h" #include "src/core/SkMD5.h" #include "src/core/SkOSFile.h" #include "src/core/SkTaskGroup.h" #include "src/utils/SkOSPath.h" #include "tests/Test.h" #include "tools/AutoreleasePool.h" #include "tools/HashAndEncode.h" #include "tools/ProcStats.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" #include "tools/flags/CommonFlags.h" #include "tools/flags/CommonFlagsConfig.h" #include "tools/ios_utils.h" #include "tools/trace/ChromeTracingTracer.h" #include "tools/trace/EventTracingPriv.h" #include "tools/trace/SkDebugfTracer.h" #include #include #include #ifndef SK_BUILD_FOR_WIN #include #endif #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && defined(SK_HAS_HEIF_LIBRARY) #include #endif #if defined(SK_BUILD_FOR_MAC) #include "include/utils/mac/SkCGUtils.h" #include "src/utils/mac/SkUniqueCFRef.h" #endif extern bool gSkForceRasterPipelineBlitter; extern bool gUseSkVMBlitter; extern bool gSkVMAllowJIT; static DEFINE_string(src, "tests gm skp mskp lottie rive svg image colorImage", "Source types to test."); static DEFINE_bool(nameByHash, false, "If true, write to FLAGS_writePath[0]/.png instead of " "to FLAGS_writePath[0]////.png"); static DEFINE_bool2(pathOpsExtended, x, false, "Run extended pathOps tests."); static DEFINE_string(matrix, "1 0 0 1", "2x2 scale+skew matrix to apply or upright when using " "'matrix' or 'upright' in config."); static DEFINE_string(skip, "", "Space-separated config/src/srcOptions/name quadruples to skip. " "'_' matches anything. '~' negates the match. E.g. \n" "'--skip gpu skp _ _' will skip all SKPs drawn into the gpu config.\n" "'--skip gpu skp _ _ 8888 gm _ aarects' will also skip the aarects GM on 8888.\n" "'--skip ~8888 svg _ svgparse_' blocks non-8888 SVGs that contain \"svgparse_\" in " "the name."); static DEFINE_string2(readPath, r, "", "If set check for equality with golden results in this directory."); DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs."); static DEFINE_string(uninterestingHashesFile, "", "File containing a list of uninteresting hashes. If a result hashes to something in " "this list, no image is written for that result."); static DEFINE_int(shards, 1, "We're splitting source data into this many shards."); static DEFINE_int(shard, 0, "Which shard do I run?"); static DEFINE_string(mskps, "", "Directory to read mskps from, or a single mskp file."); static DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter"); static DEFINE_bool(skvm, false, "sets gUseSkVMBlitter"); static DEFINE_bool(jit, true, "sets gSkVMAllowJIT"); static DEFINE_string(bisect, "", "Pair of: SKP file to bisect, followed by an l/r bisect trail string (e.g., 'lrll'). The " "l/r trail specifies which half to keep at each step of a binary search through the SKP's " "paths. An empty string performs no bisect. Only the SkPaths are bisected; all other draws " "are thrown out. This is useful for finding a reduced repo case for path drawing bugs."); static DEFINE_bool(ignoreSigInt, false, "ignore SIGINT signals during test execution"); static DEFINE_bool(checkF16, false, "Ensure that F16Norm pixels are clamped."); static DEFINE_string(colorImages, "", "List of images and/or directories to decode with color correction. " "A directory with no images is treated as a fatal error."); static DEFINE_bool2(veryVerbose, V, false, "tell individual tests to be verbose."); static DEFINE_bool(cpu, true, "Run CPU-bound work?"); static DEFINE_bool(gpu, true, "Run GPU-bound work?"); static DEFINE_bool(dryRun, false, "just print the tests that would be run, without actually running them."); static DEFINE_string(images, "", "List of images and/or directories to decode. A directory with no images" " is treated as a fatal error."); static DEFINE_bool(simpleCodec, false, "Runs of a subset of the codec tests, " "with no scaling or subsetting, always using the canvas color type."); static DEFINE_string2(match, m, nullptr, "[~][^]substring[$] [...] of name to run.\n" "Multiple matches may be separated by spaces.\n" "~ causes a matching name to always be skipped\n" "^ requires the start of the name to match\n" "$ requires the end of the name to match\n" "^ and $ requires an exact match\n" "If a name does not match any list entry,\n" "it is skipped unless some list entry starts with ~"); static DEFINE_bool2(quiet, q, false, "if true, don't print status updates."); static DEFINE_bool2(verbose, v, false, "enable verbose output from the test driver."); static DEFINE_string(skps, "skps", "Directory to read skps from."); static DEFINE_string(lotties, "lotties", "Directory to read (Bodymovin) jsons from."); static DEFINE_string(rives, "rives", "Directory to read Rive/Flare files from."); static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file."); static DEFINE_int_2(threads, j, -1, "Run threadsafe tests on a threadpool with this many extra threads, " "defaulting to one extra thread per core."); static DEFINE_string(key, "", "Space-separated key/value pairs to add to JSON identifying this builder."); static DEFINE_string(properties, "", "Space-separated key/value pairs to add to JSON identifying this run."); static DEFINE_bool(rasterize_pdf, false, "Rasterize PDFs when possible."); static DEFINE_bool(runVerifiers, false, "if true, run SkQP-style verification of GM-produced images."); #if defined(__MSVC_RUNTIME_CHECKS) #include int RuntimeCheckErrorFunc(int errorType, const char* filename, int linenumber, const char* moduleName, const char* fmt, ...) { va_list args; va_start(args, fmt); vfprintf(stderr, fmt, args); va_end(args); SkDebugf("Line #%d\nFile: %s\nModule: %s\n", linenumber, filename ? filename : "Unknown", moduleName ? moduleName : "Unknwon"); return 1; } #endif using namespace DM; using sk_gpu_test::GrContextFactory; using sk_gpu_test::GLTestContext; using sk_gpu_test::ContextInfo; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static sk_sp rec2020() { return SkColorSpace::MakeRGB(SkNamedTransferFn::kRec2020, SkNamedGamut::kRec2020); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static FILE* gVLog; template static void vlog(const char* fmt, Args&&... args) { if (gVLog) { fprintf(gVLog, fmt, args...); fflush(gVLog); } } template static void info(const char* fmt, Args&&... args) { vlog(fmt, args...); if (!FLAGS_quiet) { printf(fmt, args...); } } static void info(const char* fmt) { if (!FLAGS_quiet) { printf("%s", fmt); // Clang warns printf(fmt) is insecure. } } static SkTArray* gFailures = new SkTArray; static void fail(const SkString& err) { static SkSpinlock mutex; SkAutoSpinlock lock(mutex); SkDebugf("\n\nFAILURE: %s\n\n", err.c_str()); gFailures->push_back(err); } struct Running { SkString id; SkThreadID thread; void dump() const { info("\t%s\n", id.c_str()); } }; static void dump_json() { if (!FLAGS_writePath.isEmpty()) { JsonWriter::DumpJson(FLAGS_writePath[0], FLAGS_key, FLAGS_properties); } } // We use a spinlock to make locking this in a signal handler _somewhat_ safe. static SkSpinlock* gMutex = new SkSpinlock; static int gPending; static SkTArray* gRunning = new SkTArray; static void done(const char* config, const char* src, const char* srcOptions, const char* name) { SkString id = SkStringPrintf("%s %s %s %s", config, src, srcOptions, name); vlog("done %s\n", id.c_str()); int pending; { SkAutoSpinlock lock(*gMutex); for (int i = 0; i < gRunning->count(); i++) { if (gRunning->at(i).id == id) { gRunning->removeShuffle(i); break; } } pending = --gPending; } // We write out dm.json file and print out a progress update every once in a while. // Notice this also handles the final dm.json and progress update when pending == 0. if (pending % 500 == 0) { dump_json(); int curr = sk_tools::getCurrResidentSetSizeMB(), peak = sk_tools::getMaxResidentSetSizeMB(); SkAutoSpinlock lock(*gMutex); info("\n%dMB RAM, %dMB peak, %d queued, %d active:\n", curr, peak, gPending - gRunning->count(), gRunning->count()); for (auto& task : *gRunning) { task.dump(); } } } static void start(const char* config, const char* src, const char* srcOptions, const char* name) { SkString id = SkStringPrintf("%s %s %s %s", config, src, srcOptions, name); vlog("start %s\n", id.c_str()); SkAutoSpinlock lock(*gMutex); gRunning->push_back({id,SkGetThreadID()}); } static void find_culprit() { // Assumes gMutex is locked. SkThreadID thisThread = SkGetThreadID(); for (auto& task : *gRunning) { if (task.thread == thisThread) { info("Likely culprit:\n"); task.dump(); } } } #if defined(SK_BUILD_FOR_WIN) static LONG WINAPI crash_handler(EXCEPTION_POINTERS* e) { static const struct { const char* name; DWORD code; } kExceptions[] = { #define _(E) {#E, E} _(EXCEPTION_ACCESS_VIOLATION), _(EXCEPTION_BREAKPOINT), _(EXCEPTION_INT_DIVIDE_BY_ZERO), _(EXCEPTION_STACK_OVERFLOW), // TODO: more? #undef _ }; SkAutoSpinlock lock(*gMutex); const DWORD code = e->ExceptionRecord->ExceptionCode; info("\nCaught exception %u", code); for (const auto& exception : kExceptions) { if (exception.code == code) { info(" %s", exception.name); } } info(", was running:\n"); for (auto& task : *gRunning) { task.dump(); } find_culprit(); fflush(stdout); // Execute default exception handler... hopefully, exit. return EXCEPTION_EXECUTE_HANDLER; } static void setup_crash_handler() { SetUnhandledExceptionFilter(crash_handler); } #else #include #if !defined(SK_BUILD_FOR_ANDROID) #include #endif static constexpr int max_of() { return 0; } template static constexpr int max_of(int x, Rest... rest) { return x > max_of(rest...) ? x : max_of(rest...); } static void (*previous_handler[max_of(SIGABRT,SIGBUS,SIGFPE,SIGILL,SIGSEGV,SIGTERM)+1])(int); static void crash_handler(int sig) { SkAutoSpinlock lock(*gMutex); info("\nCaught signal %d [%s] (%dMB RAM, peak %dMB), was running:\n", sig, strsignal(sig), sk_tools::getCurrResidentSetSizeMB(), sk_tools::getMaxResidentSetSizeMB()); for (auto& task : *gRunning) { task.dump(); } find_culprit(); #if !defined(SK_BUILD_FOR_ANDROID) void* stack[128]; int count = backtrace(stack, SK_ARRAY_COUNT(stack)); char** symbols = backtrace_symbols(stack, count); info("\nStack trace:\n"); for (int i = 0; i < count; i++) { info(" %s\n", symbols[i]); } #endif fflush(stdout); if (sig == SIGINT && FLAGS_ignoreSigInt) { info("Ignoring signal %d because of --ignoreSigInt.\n" "This is probably a sign the bot is overloaded with work.\n", sig); } else { signal(sig, previous_handler[sig]); raise(sig); } } static void setup_crash_handler() { const int kSignals[] = { SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM }; for (int sig : kSignals) { previous_handler[sig] = signal(sig, crash_handler); } } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ struct Gold : public SkString { Gold() : SkString("") {} Gold(const SkString& sink, const SkString& src, const SkString& srcOptions, const SkString& name, const SkString& md5) : SkString("") { this->append(sink); this->append(src); this->append(srcOptions); this->append(name); this->append(md5); } struct Hash { uint32_t operator()(const Gold& g) const { return SkGoodHash()((const SkString&)g); } }; }; static SkTHashSet* gGold = new SkTHashSet; static void add_gold(JsonWriter::BitmapResult r) { gGold->add(Gold(r.config, r.sourceType, r.sourceOptions, r.name, r.md5)); } static void gather_gold() { if (!FLAGS_readPath.isEmpty()) { SkString path(FLAGS_readPath[0]); path.append("/dm.json"); if (!JsonWriter::ReadJson(path.c_str(), add_gold)) { fail(SkStringPrintf("Couldn't read %s for golden results.", path.c_str())); } } } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if defined(SK_BUILD_FOR_WIN) static constexpr char kNewline[] = "\r\n"; #else static constexpr char kNewline[] = "\n"; #endif static SkTHashSet* gUninterestingHashes = new SkTHashSet; static void gather_uninteresting_hashes() { if (!FLAGS_uninterestingHashesFile.isEmpty()) { sk_sp data(SkData::MakeFromFileName(FLAGS_uninterestingHashesFile[0])); if (!data) { info("WARNING: unable to read uninteresting hashes from %s\n", FLAGS_uninterestingHashesFile[0]); return; } // Copy to a string to make sure SkStrSplit has a terminating \0 to find. SkString contents((const char*)data->data(), data->size()); SkTArray hashes; SkStrSplit(contents.c_str(), kNewline, &hashes); for (const SkString& hash : hashes) { gUninterestingHashes->add(hash); } info("FYI: loaded %d distinct uninteresting hashes from %d lines\n", gUninterestingHashes->count(), hashes.count()); } } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ struct TaggedSrc : public std::unique_ptr { SkString tag; SkString options; }; struct TaggedSink : public std::unique_ptr { SkString tag; }; static constexpr bool kMemcpyOK = true; static SkTArray* gSrcs = new SkTArray; static SkTArray* gSinks = new SkTArray; static bool in_shard() { static int N = 0; return N++ % FLAGS_shards == FLAGS_shard; } static void push_src(const char* tag, ImplicitString options, Src* inSrc) { std::unique_ptr src(inSrc); if (in_shard() && FLAGS_src.contains(tag) && !CommandLineFlags::ShouldSkip(FLAGS_match, src->name().c_str())) { TaggedSrc& s = gSrcs->push_back(); s.reset(src.release()); s.tag = tag; s.options = options; } } static void push_codec_src(Path path, CodecSrc::Mode mode, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType, float scale) { if (FLAGS_simpleCodec) { const bool simple = CodecSrc::kCodec_Mode == mode || CodecSrc::kAnimated_Mode == mode; if (!simple || dstColorType != CodecSrc::kGetFromCanvas_DstColorType || scale != 1.0f) { // Only decode in the simple case. return; } } SkString folder; switch (mode) { case CodecSrc::kCodec_Mode: folder.append("codec"); break; case CodecSrc::kCodecZeroInit_Mode: folder.append("codec_zero_init"); break; case CodecSrc::kScanline_Mode: folder.append("scanline"); break; case CodecSrc::kStripe_Mode: folder.append("stripe"); break; case CodecSrc::kCroppedScanline_Mode: folder.append("crop"); break; case CodecSrc::kSubset_Mode: folder.append("codec_subset"); break; case CodecSrc::kAnimated_Mode: folder.append("codec_animated"); break; } switch (dstColorType) { case CodecSrc::kGrayscale_Always_DstColorType: folder.append("_kGray8"); break; case CodecSrc::kNonNative8888_Always_DstColorType: folder.append("_kNonNative"); break; default: break; } switch (dstAlphaType) { case kPremul_SkAlphaType: folder.append("_premul"); break; case kUnpremul_SkAlphaType: folder.append("_unpremul"); break; default: break; } if (1.0f != scale) { folder.appendf("_%.3f", scale); } CodecSrc* src = new CodecSrc(path, mode, dstColorType, dstAlphaType, scale); push_src("image", folder, src); } static void push_android_codec_src(Path path, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType, int sampleSize) { SkString folder; folder.append("scaled_codec"); switch (dstColorType) { case CodecSrc::kGrayscale_Always_DstColorType: folder.append("_kGray8"); break; case CodecSrc::kNonNative8888_Always_DstColorType: folder.append("_kNonNative"); break; default: break; } switch (dstAlphaType) { case kPremul_SkAlphaType: folder.append("_premul"); break; case kUnpremul_SkAlphaType: folder.append("_unpremul"); break; default: break; } if (1 != sampleSize) { folder.appendf("_%.3f", 1.0f / (float) sampleSize); } AndroidCodecSrc* src = new AndroidCodecSrc(path, dstColorType, dstAlphaType, sampleSize); push_src("image", folder, src); } static void push_image_gen_src(Path path, ImageGenSrc::Mode mode, SkAlphaType alphaType, bool isGpu) { SkString folder; switch (mode) { case ImageGenSrc::kCodec_Mode: folder.append("gen_codec"); break; case ImageGenSrc::kPlatform_Mode: folder.append("gen_platform"); break; } if (isGpu) { folder.append("_gpu"); } else { switch (alphaType) { case kOpaque_SkAlphaType: folder.append("_opaque"); break; case kPremul_SkAlphaType: folder.append("_premul"); break; case kUnpremul_SkAlphaType: folder.append("_unpremul"); break; default: break; } } ImageGenSrc* src = new ImageGenSrc(path, mode, alphaType, isGpu); push_src("image", folder, src); } #ifdef SK_ENABLE_ANDROID_UTILS static void push_brd_src(Path path, CodecSrc::DstColorType dstColorType, BRDSrc::Mode mode, uint32_t sampleSize) { SkString folder("brd_android_codec"); switch (mode) { case BRDSrc::kFullImage_Mode: break; case BRDSrc::kDivisor_Mode: folder.append("_divisor"); break; default: SkASSERT(false); return; } switch (dstColorType) { case CodecSrc::kGetFromCanvas_DstColorType: break; case CodecSrc::kGrayscale_Always_DstColorType: folder.append("_kGray"); break; default: SkASSERT(false); return; } if (1 != sampleSize) { folder.appendf("_%.3f", 1.0f / (float) sampleSize); } BRDSrc* src = new BRDSrc(path, mode, dstColorType, sampleSize); push_src("image", folder, src); } static void push_brd_srcs(Path path, bool gray) { if (gray) { // Only run grayscale to one sampleSize and Mode. Though interesting // to test grayscale, it should not reveal anything across various // sampleSizes and Modes // Arbitrarily choose Mode and sampleSize. push_brd_src(path, CodecSrc::kGrayscale_Always_DstColorType, BRDSrc::kFullImage_Mode, 2); } // Test on a variety of sampleSizes, making sure to include: // - 2, 4, and 8, which are natively supported by jpeg // - multiples of 2 which are not divisible by 4 (analogous for 4) // - larger powers of two, since BRD clients generally use powers of 2 // We will only produce output for the larger sizes on large images. const uint32_t sampleSizes[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 64 }; const BRDSrc::Mode modes[] = { BRDSrc::kFullImage_Mode, BRDSrc::kDivisor_Mode, }; for (uint32_t sampleSize : sampleSizes) { for (BRDSrc::Mode mode : modes) { push_brd_src(path, CodecSrc::kGetFromCanvas_DstColorType, mode, sampleSize); } } } #endif // SK_ENABLE_ANDROID_UTILS static void push_codec_srcs(Path path) { sk_sp encoded(SkData::MakeFromFileName(path.c_str())); if (!encoded) { info("Couldn't read %s.", path.c_str()); return; } std::unique_ptr codec = SkCodec::MakeFromData(encoded); if (nullptr == codec) { info("Couldn't create codec for %s.", path.c_str()); return; } // native scaling is only supported by WEBP and JPEG bool supportsNativeScaling = false; SkTArray nativeModes; nativeModes.push_back(CodecSrc::kCodec_Mode); nativeModes.push_back(CodecSrc::kCodecZeroInit_Mode); switch (codec->getEncodedFormat()) { case SkEncodedImageFormat::kJPEG: nativeModes.push_back(CodecSrc::kScanline_Mode); nativeModes.push_back(CodecSrc::kStripe_Mode); nativeModes.push_back(CodecSrc::kCroppedScanline_Mode); supportsNativeScaling = true; break; case SkEncodedImageFormat::kWEBP: nativeModes.push_back(CodecSrc::kSubset_Mode); supportsNativeScaling = true; break; case SkEncodedImageFormat::kDNG: break; default: nativeModes.push_back(CodecSrc::kScanline_Mode); break; } SkTArray colorTypes; colorTypes.push_back(CodecSrc::kGetFromCanvas_DstColorType); colorTypes.push_back(CodecSrc::kNonNative8888_Always_DstColorType); switch (codec->getInfo().colorType()) { case kGray_8_SkColorType: colorTypes.push_back(CodecSrc::kGrayscale_Always_DstColorType); break; default: break; } SkTArray alphaModes; alphaModes.push_back(kPremul_SkAlphaType); if (codec->getInfo().alphaType() != kOpaque_SkAlphaType) { alphaModes.push_back(kUnpremul_SkAlphaType); } for (CodecSrc::Mode mode : nativeModes) { for (CodecSrc::DstColorType colorType : colorTypes) { for (SkAlphaType alphaType : alphaModes) { // Only test kCroppedScanline_Mode when the alpha type is premul. The test is // slow and won't be interestingly different with different alpha types. if (CodecSrc::kCroppedScanline_Mode == mode && kPremul_SkAlphaType != alphaType) { continue; } push_codec_src(path, mode, colorType, alphaType, 1.0f); // Skip kNonNative on different native scales. It won't be interestingly // different. if (supportsNativeScaling && CodecSrc::kNonNative8888_Always_DstColorType == colorType) { // Native Scales // SkJpegCodec natively supports scaling to the following: for (auto scale : { 0.125f, 0.25f, 0.375f, 0.5f, 0.625f, 0.750f, 0.875f }) { push_codec_src(path, mode, colorType, alphaType, scale); } } } } } { std::vector frameInfos = codec->getFrameInfo(); if (frameInfos.size() > 1) { for (auto dstCT : { CodecSrc::kNonNative8888_Always_DstColorType, CodecSrc::kGetFromCanvas_DstColorType }) { for (auto at : { kUnpremul_SkAlphaType, kPremul_SkAlphaType }) { push_codec_src(path, CodecSrc::kAnimated_Mode, dstCT, at, 1.0f); } } for (float scale : { .5f, .33f }) { push_codec_src(path, CodecSrc::kAnimated_Mode, CodecSrc::kGetFromCanvas_DstColorType, kPremul_SkAlphaType, scale); } } } if (FLAGS_simpleCodec) { return; } const int sampleSizes[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; for (int sampleSize : sampleSizes) { for (CodecSrc::DstColorType colorType : colorTypes) { for (SkAlphaType alphaType : alphaModes) { // We can exercise all of the kNonNative support code in the swizzler with just a // few sample sizes. Skip the rest. if (CodecSrc::kNonNative8888_Always_DstColorType == colorType && sampleSize > 3) { continue; } push_android_codec_src(path, colorType, alphaType, sampleSize); } } } const char* ext = strrchr(path.c_str(), '.'); if (ext) { ext++; static const char* const rawExts[] = { "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", }; for (const char* rawExt : rawExts) { if (0 == strcmp(rawExt, ext)) { // RAW is not supported by image generator (skbug.com/5079) or BRD. return; } } #ifdef SK_ENABLE_ANDROID_UTILS static const char* const brdExts[] = { "jpg", "jpeg", "png", "webp", "JPG", "JPEG", "PNG", "WEBP", }; for (const char* brdExt : brdExts) { if (0 == strcmp(brdExt, ext)) { bool gray = codec->getInfo().colorType() == kGray_8_SkColorType; push_brd_srcs(path, gray); break; } } #endif } // Push image generator GPU test. push_image_gen_src(path, ImageGenSrc::kCodec_Mode, codec->getInfo().alphaType(), true); // Push image generator CPU tests. for (SkAlphaType alphaType : alphaModes) { push_image_gen_src(path, ImageGenSrc::kCodec_Mode, alphaType, false); #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) if (SkEncodedImageFormat::kWEBP != codec->getEncodedFormat() && SkEncodedImageFormat::kWBMP != codec->getEncodedFormat() && kUnpremul_SkAlphaType != alphaType) { push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false); } #elif defined(SK_BUILD_FOR_WIN) if (SkEncodedImageFormat::kWEBP != codec->getEncodedFormat() && SkEncodedImageFormat::kWBMP != codec->getEncodedFormat()) { push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false); } #elif defined(SK_ENABLE_NDK_IMAGES) push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false); #endif } } template void gather_file_srcs(const CommandLineFlags::StringArray& flags, const char* ext, const char* src_name = nullptr) { if (!src_name) { // With the exception of Lottie files, the source name is the extension. src_name = ext; } for (int i = 0; i < flags.count(); i++) { const char* path = flags[i]; if (sk_isdir(path)) { SkOSFile::Iter it(path, ext); for (SkString file; it.next(&file); ) { push_src(src_name, "", new T(SkOSPath::Join(path, file.c_str()))); } } else { push_src(src_name, "", new T(path)); } } } static bool gather_srcs() { for (skiagm::GMFactory f : skiagm::GMRegistry::Range()) { push_src("gm", "", new GMSrc(f)); } gather_file_srcs(FLAGS_skps, "skp"); gather_file_srcs(FLAGS_mskps, "mskp"); #if defined(SK_ENABLE_SKOTTIE) gather_file_srcs(FLAGS_lotties, "json", "lottie"); #endif #if defined(SK_ENABLE_SKRIVE) gather_file_srcs(FLAGS_rives, "flr", "rive"); #endif #if defined(SK_XML) gather_file_srcs(FLAGS_svgs, "svg"); #endif if (!FLAGS_bisect.isEmpty()) { // An empty l/r trail string will draw all the paths. push_src("bisect", "", new BisectSrc(FLAGS_bisect[0], FLAGS_bisect.count() > 1 ? FLAGS_bisect[1] : "")); } SkTArray images; if (!CollectImages(FLAGS_images, &images)) { return false; } for (const SkString& image : images) { push_codec_srcs(image); } SkTArray colorImages; if (!CollectImages(FLAGS_colorImages, &colorImages)) { return false; } for (const SkString& colorImage : colorImages) { push_src("colorImage", "decode_native", new ColorCodecSrc(colorImage, false)); push_src("colorImage", "decode_to_dst", new ColorCodecSrc(colorImage, true)); } return true; } static void push_sink(const SkCommandLineConfig& config, Sink* s) { std::unique_ptr sink(s); // Try a simple Src as a canary. If it fails, skip this sink. struct : public Src { Result draw(GrDirectContext*, SkCanvas* c) const override { c->drawRect(SkRect::MakeWH(1,1), SkPaint()); return Result::Ok(); } SkISize size() const override { return SkISize::Make(16, 16); } Name name() const override { return "justOneRect"; } } justOneRect; SkBitmap bitmap; SkDynamicMemoryWStream stream; SkString log; Result result = sink->draw(justOneRect, &bitmap, &stream, &log); if (result.isFatal()) { info("Could not run %s: %s\n", config.getTag().c_str(), result.c_str()); exit(1); } TaggedSink& ts = gSinks->push_back(); ts.reset(sink.release()); ts.tag = config.getTag(); } static sk_sp rgb_to_gbr() { return SkColorSpace::MakeSRGB()->makeColorSpin(); } static Sink* create_sink(const GrContextOptions& grCtxOptions, const SkCommandLineConfig* config) { if (FLAGS_gpu) { if (const SkCommandLineConfigGpu* gpuConfig = config->asConfigGpu()) { GrContextFactory testFactory(grCtxOptions); if (!testFactory.get(gpuConfig->getContextType(), gpuConfig->getContextOverrides())) { info("WARNING: can not create GPU context for config '%s'. " "GM tests will be skipped.\n", gpuConfig->getTag().c_str()); return nullptr; } if (gpuConfig->getTestThreading()) { SkASSERT(!gpuConfig->getTestPersistentCache()); return new GPUThreadTestingSink(gpuConfig, grCtxOptions); } else if (gpuConfig->getTestPersistentCache()) { return new GPUPersistentCacheTestingSink(gpuConfig, grCtxOptions); } else if (gpuConfig->getTestPrecompile()) { return new GPUPrecompileTestingSink(gpuConfig, grCtxOptions); } else if (gpuConfig->getUseDDLSink()) { return new GPUDDLSink(gpuConfig, grCtxOptions); } else if (gpuConfig->getOOPRish()) { return new GPUOOPRSink(gpuConfig, grCtxOptions); } else { return new GPUSink(gpuConfig, grCtxOptions); } } } if (const SkCommandLineConfigSvg* svgConfig = config->asConfigSvg()) { int pageIndex = svgConfig->getPageIndex(); return new SVGSink(pageIndex); } #define SINK(t, sink, ...) if (config->getBackend().equals(t)) return new sink(__VA_ARGS__) if (FLAGS_cpu) { SINK("g8", RasterSink, kGray_8_SkColorType); SINK("565", RasterSink, kRGB_565_SkColorType); SINK("4444", RasterSink, kARGB_4444_SkColorType); SINK("8888", RasterSink, kN32_SkColorType); SINK("rgba", RasterSink, kRGBA_8888_SkColorType); SINK("bgra", RasterSink, kBGRA_8888_SkColorType); SINK("rgbx", RasterSink, kRGB_888x_SkColorType); SINK("1010102", RasterSink, kRGBA_1010102_SkColorType); SINK("101010x", RasterSink, kRGB_101010x_SkColorType); SINK("bgra1010102", RasterSink, kBGRA_1010102_SkColorType); SINK("bgr101010x", RasterSink, kBGR_101010x_SkColorType); SINK("pdf", PDFSink, false, SK_ScalarDefaultRasterDPI); SINK("skp", SKPSink); SINK("svg", SVGSink); SINK("null", NullSink); SINK("xps", XPSSink); SINK("pdfa", PDFSink, true, SK_ScalarDefaultRasterDPI); SINK("pdf300", PDFSink, false, 300); SINK("jsdebug", DebugSink); // Configs relevant to color management testing (and 8888 for reference). // 'narrow' has a gamut narrower than sRGB, and different transfer function. auto narrow = SkColorSpace::MakeRGB(SkNamedTransferFn::k2Dot2, gNarrow_toXYZD50), srgb = SkColorSpace::MakeSRGB(), srgbLinear = SkColorSpace::MakeSRGBLinear(), p3 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDisplayP3); SINK( "f16", RasterSink, kRGBA_F16_SkColorType, srgbLinear); SINK( "srgb", RasterSink, kRGBA_8888_SkColorType, srgb ); SINK( "esrgb", RasterSink, kRGBA_F16_SkColorType, srgb ); SINK( "esgbr", RasterSink, kRGBA_F16_SkColorType, rgb_to_gbr()); SINK( "narrow", RasterSink, kRGBA_8888_SkColorType, narrow ); SINK( "enarrow", RasterSink, kRGBA_F16_SkColorType, narrow ); SINK( "p3", RasterSink, kRGBA_8888_SkColorType, p3 ); SINK( "ep3", RasterSink, kRGBA_F16_SkColorType, p3 ); SINK( "rec2020", RasterSink, kRGBA_8888_SkColorType, rec2020() ); SINK("erec2020", RasterSink, kRGBA_F16_SkColorType, rec2020() ); SINK("f16norm", RasterSink, kRGBA_F16Norm_SkColorType, srgb); SINK( "f32", RasterSink, kRGBA_F32_SkColorType, srgbLinear); } #undef SINK return nullptr; } static Sink* create_via(const SkString& tag, Sink* wrapped) { #define VIA(t, via, ...) if (tag.equals(t)) return new via(__VA_ARGS__) #ifdef TEST_VIA_SVG VIA("svg", ViaSVG, wrapped); #endif VIA("serialize", ViaSerialization, wrapped); VIA("pic", ViaPicture, wrapped); VIA("rtblend", ViaRuntimeBlend, wrapped); if (FLAGS_matrix.count() == 4) { SkMatrix m; m.reset(); m.setScaleX((SkScalar)atof(FLAGS_matrix[0])); m.setSkewX ((SkScalar)atof(FLAGS_matrix[1])); m.setSkewY ((SkScalar)atof(FLAGS_matrix[2])); m.setScaleY((SkScalar)atof(FLAGS_matrix[3])); VIA("matrix", ViaMatrix, m, wrapped); VIA("upright", ViaUpright, m, wrapped); } #undef VIA // Color space overrides don't actually create 'Via' instances, they mutate the original sink's // color space used for rasterization. They're parsed from the config string the same way, // though - so they flow through here. #define CS(t, cs) \ do { \ if (tag.equals(t)) { \ wrapped->setColorSpace(cs); \ return wrapped; \ } \ } while (false) // 'narrow' has a gamut narrower than sRGB, and different transfer function. CS("narrow", SkColorSpace::MakeRGB(SkNamedTransferFn::k2Dot2, gNarrow_toXYZD50)); CS("srgb", SkColorSpace::MakeSRGB()); CS("linear", SkColorSpace::MakeSRGBLinear()); CS("p3", SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDisplayP3)); CS("spin", rgb_to_gbr()); CS("rec2020", rec2020()); #undef CS return nullptr; } static bool gather_sinks(const GrContextOptions& grCtxOptions, bool defaultConfigs) { SkCommandLineConfigArray configs; ParseConfigs(FLAGS_config, &configs); AutoreleasePool pool; for (int i = 0; i < configs.count(); i++) { const SkCommandLineConfig& config = *configs[i]; Sink* sink = create_sink(grCtxOptions, &config); if (sink == nullptr) { info("Skipping config %s: Don't understand '%s'.\n", config.getTag().c_str(), config.getTag().c_str()); continue; } const SkTArray& parts = config.getViaParts(); for (int j = parts.count(); j-- > 0;) { const SkString& part = parts[j]; Sink* next = create_via(part, sink); if (next == nullptr) { info("Skipping config %s: Don't understand '%s'.\n", config.getTag().c_str(), part.c_str()); delete sink; sink = nullptr; break; } sink = next; } if (sink) { push_sink(config, sink); } } // If no configs were requested (just running tests, perhaps?), then we're okay. if (configs.count() == 0 || // If we're using the default configs, we're okay. defaultConfigs || // Otherwise, make sure that all specified configs have become sinks. configs.count() == gSinks->count()) { return true; } return false; } static bool match(const char* needle, const char* haystack) { if ('~' == needle[0]) { return !match(needle + 1, haystack); } if (0 == strcmp("_", needle)) { return true; } return nullptr != strstr(haystack, needle); } static bool should_skip(const char* sink, const char* src, const char* srcOptions, const char* name) { for (int i = 0; i < FLAGS_skip.count() - 3; i += 4) { if (match(FLAGS_skip[i+0], sink) && match(FLAGS_skip[i+1], src) && match(FLAGS_skip[i+2], srcOptions) && match(FLAGS_skip[i+3], name)) { return true; } } return false; } // Even when a Task Sink reports to be non-threadsafe (e.g. GPU), we know things like // .png encoding are definitely thread safe. This lets us offload that work to CPU threads. static SkTaskGroup* gDefinitelyThreadSafeWork = new SkTaskGroup; // The finest-grained unit of work we can run: draw a single Src into a single Sink, // report any errors, and perhaps write out the output: a .png of the bitmap, or a raw stream. struct Task { Task(const TaggedSrc& src, const TaggedSink& sink) : src(src), sink(sink) {} const TaggedSrc& src; const TaggedSink& sink; static void Run(const Task& task) { AutoreleasePool pool; SkString name = task.src->name(); SkString log; if (!FLAGS_dryRun) { SkBitmap bitmap; SkDynamicMemoryWStream stream; start(task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str()); Result result = task.sink->draw(*task.src, &bitmap, &stream, &log); if (!log.isEmpty()) { info("%s %s %s %s:\n%s\n", task.sink.tag.c_str() , task.src.tag.c_str() , task.src.options.c_str() , name.c_str() , log.c_str()); } if (result.isSkip()) { done(task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str()); return; } if (result.isFatal()) { fail(SkStringPrintf("%s %s %s %s: %s", task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str(), result.c_str())); } // Run verifiers if specified if (FLAGS_runVerifiers) { RunGMVerifiers(task, bitmap); } // We're likely switching threads here, so we must capture by value, [=] or [foo,bar]. SkStreamAsset* data = stream.detachAsStream().release(); gDefinitelyThreadSafeWork->add([task,name,bitmap,data]{ std::unique_ptr ownedData(data); std::unique_ptr hashAndEncode; SkString md5; if (!FLAGS_writePath.isEmpty() || !FLAGS_readPath.isEmpty()) { SkMD5 hash; if (data->getLength()) { hash.writeStream(data, data->getLength()); data->rewind(); } else { hashAndEncode = std::make_unique(bitmap); hashAndEncode->feedHash(&hash); } SkMD5::Digest digest = hash.finish(); for (int i = 0; i < 16; i++) { md5.appendf("%02x", digest.data[i]); } } if (!FLAGS_readPath.isEmpty() && !gGold->contains(Gold(task.sink.tag, task.src.tag, task.src.options, name, md5))) { fail(SkStringPrintf("%s not found for %s %s %s %s in %s", md5.c_str(), task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str(), FLAGS_readPath[0])); } // Tests sometimes use a nullptr ext to indicate no image should be uploaded. const char* ext = task.sink->fileExtension(); if (ext && !FLAGS_writePath.isEmpty()) { #if defined(SK_BUILD_FOR_MAC) if (FLAGS_rasterize_pdf && SkString("pdf").equals(ext)) { SkASSERT(data->getLength() > 0); sk_sp blob = SkData::MakeFromStream(data, data->getLength()); SkUniqueCFRef provider{ CGDataProviderCreateWithData(nullptr, blob->data(), blob->size(), nullptr)}; SkUniqueCFRef pdf{ CGPDFDocumentCreateWithProvider(provider.get())}; CGPDFPageRef page = CGPDFDocumentGetPage(pdf.get(), 1); CGRect bounds = CGPDFPageGetBoxRect(page, kCGPDFMediaBox); const int w = (int)CGRectGetWidth (bounds), h = (int)CGRectGetHeight(bounds); SkBitmap rasterized; rasterized.allocPixels(SkImageInfo::Make( w, h, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); rasterized.eraseColor(SK_ColorWHITE); SkUniqueCFRef cs{CGColorSpaceCreateDeviceRGB()}; CGBitmapInfo info = kCGBitmapByteOrder32Big | (CGBitmapInfo)kCGImageAlphaPremultipliedLast; SkUniqueCFRef ctx{CGBitmapContextCreate( rasterized.getPixels(), w,h,8, rasterized.rowBytes(), cs.get(), info)}; CGContextDrawPDFPage(ctx.get(), page); // Skip calling hashAndEncode->feedHash(SkMD5*)... we want the .pdf's hash. hashAndEncode = std::make_unique(rasterized); WriteToDisk(task, md5, "png", nullptr,0, &rasterized, hashAndEncode.get()); } else #endif if (data->getLength()) { WriteToDisk(task, md5, ext, data, data->getLength(), nullptr, nullptr); SkASSERT(bitmap.drawsNothing()); } else if (!bitmap.drawsNothing()) { WriteToDisk(task, md5, ext, nullptr, 0, &bitmap, hashAndEncode.get()); } } SkPixmap pm; if (FLAGS_checkF16 && bitmap.colorType() == kRGBA_F16Norm_SkColorType && bitmap.peekPixels(&pm)) { bool unclamped = false; for (int y = 0; y < pm.height() && !unclamped; ++y) for (int x = 0; x < pm.width() && !unclamped; ++x) { Sk4f rgba = SkHalfToFloat_finite_ftz(*pm.addr64(x, y)); float a = rgba[3]; if (a > 1.0f || (rgba < 0.0f).anyTrue() || (rgba > a).anyTrue()) { SkDebugf("[%s] F16Norm pixel [%d, %d] unclamped: (%g, %g, %g, %g)\n", name.c_str(), x, y, rgba[0], rgba[1], rgba[2], rgba[3]); unclamped = true; } } } }); } done(task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str()); } static SkString identify_gamut(SkColorSpace* cs) { if (!cs) { return SkString("untagged"); } skcms_Matrix3x3 gamut; if (cs->toXYZD50(&gamut)) { auto eq = [](skcms_Matrix3x3 x, skcms_Matrix3x3 y) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { if (x.vals[i][j] != y.vals[i][j]) { return false; } } return true; }; if (eq(gamut, SkNamedGamut::kSRGB )) { return SkString("sRGB"); } if (eq(gamut, SkNamedGamut::kAdobeRGB )) { return SkString("Adobe"); } if (eq(gamut, SkNamedGamut::kDisplayP3)) { return SkString("P3"); } if (eq(gamut, SkNamedGamut::kRec2020 )) { return SkString("2020"); } if (eq(gamut, SkNamedGamut::kXYZ )) { return SkString("XYZ"); } if (eq(gamut, gNarrow_toXYZD50 )) { return SkString("narrow"); } return SkString("other"); } return SkString("non-XYZ"); } static SkString identify_transfer_fn(SkColorSpace* cs) { if (!cs) { return SkString("untagged"); } auto eq = [](skcms_TransferFunction x, skcms_TransferFunction y) { return x.g == y.g && x.a == y.a && x.b == y.b && x.c == y.c && x.d == y.d && x.e == y.e && x.f == y.f; }; skcms_TransferFunction tf; cs->transferFn(&tf); switch (classify_transfer_fn(tf)) { case sRGBish_TF: if (tf.a == 1 && tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0) { return SkStringPrintf("gamma %.3g", tf.g); } if (eq(tf, SkNamedTransferFn::kSRGB)) { return SkString("sRGB"); } if (eq(tf, SkNamedTransferFn::kRec2020)) { return SkString("2020"); } return SkStringPrintf("%.3g %.3g %.3g %.3g %.3g %.3g %.3g", tf.g, tf.a, tf.b, tf.c, tf.d, tf.e, tf.f); case PQish_TF: if (eq(tf, SkNamedTransferFn::kPQ)) { return SkString("PQ"); } return SkStringPrintf("PQish %.3g %.3g %.3g %.3g %.3g %.3g", tf.a, tf.b, tf.c, tf.d, tf.e, tf.f); case HLGish_TF: if (eq(tf, SkNamedTransferFn::kHLG)) { return SkString("HLG"); } return SkStringPrintf("HLGish %.3g %.3g %.3g %.3g %.3g (%.3g)", tf.a, tf.b, tf.c, tf.d, tf.e, tf.f+1); case HLGinvish_TF: break; case Bad_TF: break; } return SkString("non-numeric"); } static void WriteToDisk(const Task& task, SkString md5, const char* ext, SkStream* data, size_t len, const SkBitmap* bitmap, const HashAndEncode* hashAndEncode) { JsonWriter::BitmapResult result; result.name = task.src->name(); result.config = task.sink.tag; result.sourceType = task.src.tag; result.sourceOptions = task.src.options; result.ext = ext; result.md5 = md5; if (bitmap) { result.gamut = identify_gamut (bitmap->colorSpace()); result.transferFn = identify_transfer_fn (bitmap->colorSpace()); result.colorType = ToolUtils::colortype_name (bitmap->colorType()); result.alphaType = ToolUtils::alphatype_name (bitmap->alphaType()); result.colorDepth = ToolUtils::colortype_depth(bitmap->colorType()); } JsonWriter::AddBitmapResult(result); // If an MD5 is uninteresting, we want it noted in the JSON file, // but don't want to dump it out as a .png (or whatever ext is). if (gUninterestingHashes->contains(md5)) { return; } const char* dir = FLAGS_writePath[0]; SkString resources = GetResourcePath(); if (0 == strcmp(dir, "@")) { // Needed for iOS. dir = resources.c_str(); } sk_mkdir(dir); SkString path; if (FLAGS_nameByHash) { path = SkOSPath::Join(dir, result.md5.c_str()); path.append("."); path.append(ext); if (sk_exists(path.c_str())) { return; // Content-addressed. If it exists already, we're done. } } else { path = SkOSPath::Join(dir, task.sink.tag.c_str()); sk_mkdir(path.c_str()); path = SkOSPath::Join(path.c_str(), task.src.tag.c_str()); sk_mkdir(path.c_str()); if (0 != strcmp(task.src.options.c_str(), "")) { path = SkOSPath::Join(path.c_str(), task.src.options.c_str()); sk_mkdir(path.c_str()); } path = SkOSPath::Join(path.c_str(), task.src->name().c_str()); path.append("."); path.append(ext); } SkFILEWStream file(path.c_str()); if (!file.isValid()) { fail(SkStringPrintf("Can't open %s for writing.\n", path.c_str())); return; } if (bitmap) { SkASSERT(hashAndEncode); if (!hashAndEncode->encodePNG(&file, result.md5.c_str(), FLAGS_key, FLAGS_properties)) { fail(SkStringPrintf("Can't encode PNG to %s.\n", path.c_str())); return; } } else { if (!file.writeStream(data, len)) { fail(SkStringPrintf("Can't write to %s.\n", path.c_str())); return; } } } static void RunGMVerifiers(const Task& task, const SkBitmap& actualBitmap) { const SkString name = task.src->name(); auto verifierList = task.src->getVerifiers(); if (verifierList == nullptr) { return; } skiagm::verifiers::VerifierResult res = verifierList->verifyAll(task.sink->colorInfo(), actualBitmap); if (!res.ok()) { fail( SkStringPrintf( "%s %s %s %s: verifier failed: %s", task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str(), res.message().c_str())); } } }; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Unit tests don't fit so well into the Src/Sink model, so we give them special treatment. static SkTDArray* gParallelTests = new SkTDArray; static SkTDArray* gSerialTests = new SkTDArray; static void gather_tests() { if (!FLAGS_src.contains("tests")) { return; } for (const skiatest::Test& test : skiatest::TestRegistry::Range()) { if (!in_shard()) { continue; } if (CommandLineFlags::ShouldSkip(FLAGS_match, test.name)) { continue; } if (test.needsGpu && FLAGS_gpu) { gSerialTests->push_back(test); } else if (!test.needsGpu && FLAGS_cpu) { gParallelTests->push_back(test); } } } static void run_test(skiatest::Test test, const GrContextOptions& grCtxOptions) { struct : public skiatest::Reporter { void reportFailed(const skiatest::Failure& failure) override { fail(failure.toString()); } bool allowExtendedTest() const override { return FLAGS_pathOpsExtended; } bool verbose() const override { return FLAGS_veryVerbose; } } reporter; if (!FLAGS_dryRun && !should_skip("_", "tests", "_", test.name)) { AutoreleasePool pool; GrContextOptions options = grCtxOptions; test.modifyGrContextOptions(&options); skiatest::ReporterContext ctx(&reporter, SkString(test.name)); start("unit", "test", "", test.name); test.run(&reporter, options); } done("unit", "test", "", test.name); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ int main(int argc, char** argv) { #if defined(__MSVC_RUNTIME_CHECKS) _RTC_SetErrorFunc(RuntimeCheckErrorFunc); #endif #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && defined(SK_HAS_HEIF_LIBRARY) android::ProcessState::self()->startThreadPool(); #endif CommandLineFlags::Parse(argc, argv); initializeEventTracingForTools(); #if !defined(SK_BUILD_FOR_GOOGLE3) && defined(SK_BUILD_FOR_IOS) cd_Documents(); #endif setbuf(stdout, nullptr); setup_crash_handler(); ToolUtils::SetDefaultFontMgr(); SetAnalyticAAFromCommonFlags(); gSkForceRasterPipelineBlitter = FLAGS_forceRasterPipeline; gUseSkVMBlitter = FLAGS_skvm; gSkVMAllowJIT = FLAGS_jit; // The bots like having a verbose.log to upload, so always touch the file even if --verbose. if (!FLAGS_writePath.isEmpty()) { sk_mkdir(FLAGS_writePath[0]); gVLog = fopen(SkOSPath::Join(FLAGS_writePath[0], "verbose.log").c_str(), "w"); } if (FLAGS_verbose) { gVLog = stderr; } GrContextOptions grCtxOptions; SetCtxOptionsFromCommonFlags(&grCtxOptions); dump_json(); // It's handy for the bots to assume this is ~never missing. SkAutoGraphics ag; SkTaskGroup::Enabler enabled(FLAGS_threads); if (nullptr == GetResourceAsData("images/color_wheel.png")) { info("Some resources are missing. Do you need to set --resourcePath?\n"); } gather_gold(); gather_uninteresting_hashes(); if (!gather_srcs()) { return 1; } // TODO(dogben): This is a bit ugly. Find a cleaner way to do this. bool defaultConfigs = true; for (int i = 0; i < argc; i++) { static constexpr char kConfigArg[] = "--config"; if (strcmp(argv[i], kConfigArg) == 0) { defaultConfigs = false; break; } } if (!gather_sinks(grCtxOptions, defaultConfigs)) { return 1; } gather_tests(); gPending = gSrcs->count() * gSinks->count() + gParallelTests->count() + gSerialTests->count(); info("%d srcs * %d sinks + %d tests == %d tasks\n", gSrcs->count(), gSinks->count(), gParallelTests->count() + gSerialTests->count(), gPending); // Kick off as much parallel work as we can, making note of any serial work we'll need to do. SkTaskGroup parallel; SkTArray serial; for (TaggedSink& sink : *gSinks) { for (TaggedSrc& src : *gSrcs) { if (src->veto(sink->flags()) || should_skip(sink.tag.c_str(), src.tag.c_str(), src.options.c_str(), src->name().c_str())) { SkAutoSpinlock lock(*gMutex); gPending--; continue; } Task task(src, sink); if (src->serial() || sink->serial()) { serial.push_back(task); } else { parallel.add([task] { Task::Run(task); }); } } } for (skiatest::Test& test : *gParallelTests) { parallel.add([test, grCtxOptions] { run_test(test, grCtxOptions); }); } // With the parallel work running, run serial tasks and tests here on main thread. for (Task& task : serial) { Task::Run(task); } for (skiatest::Test& test : *gSerialTests) { run_test(test, grCtxOptions); } // Wait for any remaining parallel work to complete (including any spun off of serial tasks). parallel.wait(); gDefinitelyThreadSafeWork->wait(); // At this point we're back in single-threaded land. // We'd better have run everything. SkASSERT(gPending == 0); // Make sure we've flushed all our results to disk. dump_json(); if (!gFailures->empty()) { info("Failures:\n"); for (const SkString& fail : *gFailures) { info("\t%s\n", fail.c_str()); } info("%d failures\n", gFailures->count()); return 1; } SkGraphics::PurgeAllCaches(); info("Finished!\n"); return 0; }