/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkM44.h" #include "include/utils/SkRandom.h" #include "src/core/SkMatrixPriv.h" #include "tests/Test.h" static bool eq(const SkM44& a, const SkM44& b, float tol) { float fa[16], fb[16]; a.getColMajor(fa); b.getColMajor(fb); for (int i = 0; i < 16; ++i) { if (!SkScalarNearlyEqual(fa[i], fb[i], tol)) { return false; } } return true; } DEF_TEST(M44, reporter) { SkM44 m, im; REPORTER_ASSERT(reporter, SkM44(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) == m); REPORTER_ASSERT(reporter, SkM44() == m); REPORTER_ASSERT(reporter, m.invert(&im)); REPORTER_ASSERT(reporter, SkM44() == im); m.setTranslate(3, 4, 2); REPORTER_ASSERT(reporter, SkM44(1, 0, 0, 3, 0, 1, 0, 4, 0, 0, 1, 2, 0, 0, 0, 1) == m); const float f[] = { 1, 0, 0, 2, 3, 1, 2, 5, 0, 5, 3, 0, 0, 1, 0, 2 }; m = SkM44::ColMajor(f); REPORTER_ASSERT(reporter, SkM44(f[0], f[4], f[ 8], f[12], f[1], f[5], f[ 9], f[13], f[2], f[6], f[10], f[14], f[3], f[7], f[11], f[15]) == m); { SkM44 t = m.transpose(); REPORTER_ASSERT(reporter, t != m); REPORTER_ASSERT(reporter, t.rc(1,0) == m.rc(0,1)); SkM44 tt = t.transpose(); REPORTER_ASSERT(reporter, tt == m); } m = SkM44::RowMajor(f); REPORTER_ASSERT(reporter, SkM44(f[ 0], f[ 1], f[ 2], f[ 3], f[ 4], f[ 5], f[ 6], f[ 7], f[ 8], f[ 9], f[10], f[14], f[12], f[13], f[14], f[15]) == m); REPORTER_ASSERT(reporter, m.invert(&im)); m = m * im; // m should be identity now, but our calc is not perfect... REPORTER_ASSERT(reporter, eq(SkM44(), m, 0.0000005f)); REPORTER_ASSERT(reporter, SkM44() != m); } DEF_TEST(M44_v3, reporter) { SkV3 a = {1, 2, 3}, b = {1, 2, 2}; REPORTER_ASSERT(reporter, a.lengthSquared() == 1 + 4 + 9); REPORTER_ASSERT(reporter, b.length() == 3); REPORTER_ASSERT(reporter, a.dot(b) == 1 + 4 + 6); REPORTER_ASSERT(reporter, b.dot(a) == 1 + 4 + 6); REPORTER_ASSERT(reporter, (a.cross(b) == SkV3{-2, 1, 0})); REPORTER_ASSERT(reporter, (b.cross(a) == SkV3{ 2, -1, 0})); SkM44 m = { 2, 0, 0, 3, 0, 1, 0, 5, 0, 0, 3, 1, 0, 0, 0, 1 }; SkV3 c = m * a; REPORTER_ASSERT(reporter, (c == SkV3{2, 2, 9})); SkV4 d = m.map(4, 3, 2, 1); REPORTER_ASSERT(reporter, (d == SkV4{11, 8, 7, 1})); } DEF_TEST(M44_v4, reporter) { SkM44 m( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); SkV4 r0 = m.row(0), r1 = m.row(1), r2 = m.row(2), r3 = m.row(3); REPORTER_ASSERT(reporter, (r0 == SkV4{ 1, 2, 3, 4})); REPORTER_ASSERT(reporter, (r1 == SkV4{ 5, 6, 7, 8})); REPORTER_ASSERT(reporter, (r2 == SkV4{ 9, 10, 11, 12})); REPORTER_ASSERT(reporter, (r3 == SkV4{13, 14, 15, 16})); REPORTER_ASSERT(reporter, SkM44::Rows(r0, r1, r2, r3) == m); SkV4 c0 = m.col(0), c1 = m.col(1), c2 = m.col(2), c3 = m.col(3); REPORTER_ASSERT(reporter, (c0 == SkV4{1, 5, 9, 13})); REPORTER_ASSERT(reporter, (c1 == SkV4{2, 6, 10, 14})); REPORTER_ASSERT(reporter, (c2 == SkV4{3, 7, 11, 15})); REPORTER_ASSERT(reporter, (c3 == SkV4{4, 8, 12, 16})); REPORTER_ASSERT(reporter, SkM44::Cols(c0, c1, c2, c3) == m); // implement matrix * vector using column vectors SkV4 v = {1, 2, 3, 4}; SkV4 v1 = m * v; SkV4 v2 = c0 * v.x + c1 * v.y + c2 * v.z + c3 * v.w; REPORTER_ASSERT(reporter, v1 == v2); REPORTER_ASSERT(reporter, (c0 + r0 == SkV4{c0.x+r0.x, c0.y+r0.y, c0.z+r0.z, c0.w+r0.w})); REPORTER_ASSERT(reporter, (c0 - r0 == SkV4{c0.x-r0.x, c0.y-r0.y, c0.z-r0.z, c0.w-r0.w})); REPORTER_ASSERT(reporter, (c0 * r0 == SkV4{c0.x*r0.x, c0.y*r0.y, c0.z*r0.z, c0.w*r0.w})); } DEF_TEST(M44_rotate, reporter) { const SkV3 x = {1, 0, 0}, y = {0, 1, 0}, z = {0, 0, 1}; // We have radians version of setRotateAbout methods, but even with our best approx // for PI, sin(SK_ScalarPI) != 0, so to make the comparisons in the unittest clear, // I'm using the variants that explicitly take the sin,cos values. struct { SkScalar sinAngle, cosAngle; SkV3 aboutAxis; SkV3 expectedX, expectedY, expectedZ; } recs[] = { { 0, 1, x, x, y, z}, // angle = 0 { 0, 1, y, x, y, z}, // angle = 0 { 0, 1, z, x, y, z}, // angle = 0 { 0,-1, x, x,-y,-z}, // angle = 180 { 0,-1, y, -x, y,-z}, // angle = 180 { 0,-1, z, -x,-y, z}, // angle = 180 // Skia coordinate system is right-handed { 1, 0, x, x, z,-y}, // angle = 90 { 1, 0, y, -z, y, x}, // angle = 90 { 1, 0, z, y,-x, z}, // angle = 90 {-1, 0, x, x,-z, y}, // angle = -90 {-1, 0, y, z, y,-x}, // angle = -90 {-1, 0, z, -y, x, z}, // angle = -90 }; for (const auto& r : recs) { SkM44 m(SkM44::kNaN_Constructor); m.setRotateUnitSinCos(r.aboutAxis, r.sinAngle, r.cosAngle); auto mx = m * x; auto my = m * y; auto mz = m * z; REPORTER_ASSERT(reporter, mx == r.expectedX); REPORTER_ASSERT(reporter, my == r.expectedY); REPORTER_ASSERT(reporter, mz == r.expectedZ); // flipping the axis-of-rotation should flip the results mx = m * -x; my = m * -y; mz = m * -z; REPORTER_ASSERT(reporter, mx == -r.expectedX); REPORTER_ASSERT(reporter, my == -r.expectedY); REPORTER_ASSERT(reporter, mz == -r.expectedZ); } } DEF_TEST(M44_rectToRect, reporter) { SkV2 dstScales[] = { {1.f, 1.f}, // no aspect ratio change, nor up/down scaling {0.25f, 0.5f}, // aspect ratio narrows, downscale x and y {0.5f, 0.25f}, // aspect ratio widens, downscale x and y {0.5f, 0.5f}, // no aspect ratio change, downscale x and y {2.f, 3.f}, // aspect ratio narrows, upscale x and y {3.f, 2.f}, // aspect ratio widens, upscale x and y {2.f, 2.f}, // no aspect ratio change, upscale x and y {0.5f, 2.f}, // aspect ratio narrows, downscale x and upscale y {2.f, 0.5f} // aspect ratio widens, upscale x and downscale y }; auto map2d = [&](const SkM44& m, SkV2 p) { SkV4 mapped = m.map(p.x, p.y, 0.f, 1.f); REPORTER_ASSERT(reporter, mapped.z == 0.f); REPORTER_ASSERT(reporter, mapped.w == 1.f); return SkV2{mapped.x, mapped.y}; }; auto assertNearlyEqual = [&](float actual, float expected) { REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual, expected), "Expected %g == %g", actual, expected); }; auto assertEdges = [&](float actualLow, float actualHigh, float expectedLow, float expectedHigh) { SkASSERT(expectedLow < expectedHigh); REPORTER_ASSERT(reporter, actualLow < actualHigh, "Expected %g < %g", actualLow, actualHigh); assertNearlyEqual(actualLow, expectedLow); assertNearlyEqual(actualHigh, expectedHigh); }; SkRandom rand; for (const auto& r : dstScales) { SkRect src = SkRect::MakeXYWH(rand.nextRangeF(-10.f, 10.f), rand.nextRangeF(-10.f, 10.f), rand.nextRangeF(1.f, 10.f), rand.nextRangeF(1.f, 10.f)); SkRect dst = SkRect::MakeXYWH(rand.nextRangeF(-10.f, 10.f), rand.nextRangeF(-10.f, 10.f), r.x * src.width(), r.y * src.height()); SkM44 m = SkM44::RectToRect(src, dst); // Regardless of the factory, center of src maps to center of dst SkV2 center = map2d(m, {src.centerX(), src.centerY()}); assertNearlyEqual(center.x, dst.centerX()); assertNearlyEqual(center.y, dst.centerY()); // Map the four corners of src and validate against expected edge mapping SkV2 tl = map2d(m, {src.fLeft, src.fTop}); SkV2 tr = map2d(m, {src.fRight, src.fTop}); SkV2 br = map2d(m, {src.fRight, src.fBottom}); SkV2 bl = map2d(m, {src.fLeft, src.fBottom}); assertEdges(tl.x, tr.x, dst.fLeft, dst.fRight); assertEdges(bl.x, br.x, dst.fLeft, dst.fRight); assertEdges(tl.y, bl.y, dst.fTop, dst.fBottom); assertEdges(tr.y, br.y, dst.fTop, dst.fBottom); } } DEF_TEST(M44_mapRect, reporter) { auto assertRectsNearlyEqual = [&](const SkRect& actual, const SkRect& expected, const SkRect& e) { REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fLeft, expected.fLeft, e.fLeft), "Expected %g == %g", actual.fLeft, expected.fLeft); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fTop, expected.fTop, e.fTop), "Expected %g == %g", actual.fTop, expected.fTop); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fRight, expected.fRight, e.fRight), "Expected %g == %g", actual.fRight, expected.fRight); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fBottom, expected.fBottom, e.fBottom), "Expected %g == %g", actual.fBottom, expected.fBottom); }; auto assertMapRect = [&](const SkM44& m, const SkRect& src, const SkRect* expected) { SkRect epsilon = {1e-5f, 1e-5f, 1e-5f, 1e-5f}; SkRect actual = SkMatrixPriv::MapRect(m, src); REPORTER_ASSERT(reporter, !actual.isEmpty()); if (expected) { assertRectsNearlyEqual(actual, *expected, epsilon); } SkV4 corners[4] = {{src.fLeft, src.fTop, 0.f, 1.f}, {src.fRight, src.fTop, 0.f, 1.f}, {src.fRight, src.fBottom, 0.f, 1.f}, {src.fLeft, src.fBottom, 0.f, 1.f}}; bool leftFound = false; bool topFound = false; bool rightFound = false; bool bottomFound = false; bool clipped = false; for (int i = 0; i < 4; ++i) { SkV4 mapped = m * corners[i]; if (mapped.w > 0.f) { // Should be contained in actual and might be on one or two of actual's edges float x = mapped.x / mapped.w; float y = mapped.y / mapped.w; // Can't use SkRect::contains() since it treats right and bottom edges as exclusive REPORTER_ASSERT(reporter, actual.fLeft <= x && x <= actual.fRight, "Expected %g contained in [%g, %g]", x, actual.fLeft, actual.fRight); REPORTER_ASSERT(reporter, actual.fTop <= y && y <= actual.fBottom, "Expected %g contained in [%g, %g]", y, actual.fTop, actual.fBottom); leftFound |= SkScalarNearlyEqual(x, actual.fLeft); topFound |= SkScalarNearlyEqual(y, actual.fTop); rightFound |= SkScalarNearlyEqual(x, actual.fRight); bottomFound |= SkScalarNearlyEqual(y, actual.fBottom); } else { // The mapped point would be clipped so the clipped mapped bounds don't necessarily // contain it clipped = true; } } if (clipped) { // At least one of the mapped corners should have contributed to the rect REPORTER_ASSERT(reporter, leftFound || topFound || rightFound || bottomFound); // For any edge that came from a clipped corner, increase its error tolerance relative // to what SkPath::ApplyPerspectiveClip calculates. // TODO(michaelludwig): skbug.com/12335 required updating the w epsilon distance which // greatly increased noise for coords projecting to infinity. They aren't "wrong", since // the intent was clearly to pick a big number that's definitely offscreen, but // MapRect should have a more robust solution than a fixed w > epsilon and when it does, // these expectations for clipped points should be more accurate. if (!leftFound) { epsilon.fLeft = .01f * actual.fLeft; } if (!topFound) { epsilon.fTop = .01f * actual.fTop; } if (!rightFound) { epsilon.fRight = .01f * actual.fRight; } if (!bottomFound) { epsilon.fBottom = .01f * actual.fBottom; } } else { // The mapped corners should have contributed to all four edges of the returned rect REPORTER_ASSERT(reporter, leftFound && topFound && rightFound && bottomFound); } SkPath path = SkPath::Rect(src); path.transform(m.asM33(), SkApplyPerspectiveClip::kYes); assertRectsNearlyEqual(actual, path.getBounds(), epsilon); }; // src chosen arbitrarily const SkRect src = SkRect::MakeLTRB(4.83f, -0.48f, 5.53f, 30.68f); // Identity maps src to src assertMapRect(SkM44(), src, &src); // Scale+Translate just offsets src SkRect st = SkRect::MakeLTRB(10.f + 2.f * src.fLeft, 8.f + 4.f * src.fTop, 10.f + 2.f * src.fRight, 8.f + 4.f * src.fBottom); assertMapRect(SkM44::Scale(2.f, 4.f).postTranslate(10.f, 8.f), src, &st); // Rotate 45 degrees about center assertMapRect(SkM44::Rotate({0.f, 0.f, 1.f}, SK_ScalarPI / 4.f) .preTranslate(-src.centerX(), -src.centerY()) .postTranslate(src.centerX(), src.centerY()), src, nullptr); // Perspective matrix where src does not need to be clipped w > 0 SkM44 p = SkM44::Perspective(0.01f, 10.f, SK_ScalarPI / 3.f); p.preTranslate(0.f, 5.f, -0.1f); p.preConcat(SkM44::Rotate({0.f, 1.f, 0.f}, 0.008f /* radians */)); assertMapRect(p, src, nullptr); // Perspective matrix where src *does* need to be clipped w > 0 p.setIdentity(); p.setRow(3, {-.2f, -.6f, 0.f, 8.f}); assertMapRect(p, src, nullptr); }