/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkRandom.h" #include "src/pathops/SkIntersections.h" #include "src/pathops/SkPathOpsCubic.h" #include "src/pathops/SkPathOpsLine.h" #include "src/pathops/SkPathOpsQuad.h" #include "src/pathops/SkReduceOrder.h" #include "tests/PathOpsTestCommon.h" #include "tests/Test.h" static bool gPathOpsCubicLineIntersectionIdeasVerbose = false; static struct CubicLineFailures { CubicPts c; double t; SkDPoint p; } cubicLineFailures[] = { {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375}, {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}}, 0.37329583, {107.54935269006289, -632.13736293162208}}, {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375}, {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}}, 0.660005242, {-32.973148967736151, 478.01341797403569}}, {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625}, {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}}, 0.578826774, {-390.17910153915489, -687.21144412296007}}, }; int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures); double measuredSteps[] = { 9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007, 3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0, 3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005, 4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232, 0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185, 0.0351329803, 0.103964925, }; /* last output : errors=3121 9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007 3.125e-007 5e-007 4.375e-007 0 0 3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005 4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437 0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185 0.0351329803 0.103964925 */ static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t, int* iters) { double firstStep = step; do { *iters += 1; SkDPoint cubicAtT = cubic.ptAtT(t); if (cubicAtT.approximatelyEqual(pt)) { break; } double calcX = cubicAtT.fX - pt.fX; double calcY = cubicAtT.fY - pt.fY; double calcDist = calcX * calcX + calcY * calcY; if (step == 0) { SkDebugf("binary search failed: step=%1.9g cubic=", firstStep); cubic.dump(); SkDebugf(" t=%1.9g ", t); pt.dump(); SkDebugf("\n"); return -1; } double lastStep = step; step /= 2; SkDPoint lessPt = cubic.ptAtT(t - lastStep); double lessX = lessPt.fX - pt.fX; double lessY = lessPt.fY - pt.fY; double lessDist = lessX * lessX + lessY * lessY; // use larger x/y difference to choose step if (calcDist > lessDist) { t -= step; t = std::max(0., t); } else { SkDPoint morePt = cubic.ptAtT(t + lastStep); double moreX = morePt.fX - pt.fX; double moreY = morePt.fY - pt.fY; double moreDist = moreX * moreX + moreY * moreY; if (calcDist <= moreDist) { continue; } t += step; t = std::min(1., t); } } while (true); return t; } #if 0 static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) { if (approximately_zero(A) && approximately_zero_when_compared_to(A, B) && approximately_zero_when_compared_to(A, C) && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic return false; } if (approximately_zero_when_compared_to(D, A) && approximately_zero_when_compared_to(D, B) && approximately_zero_when_compared_to(D, C)) { // 0 is one root return false; } if (approximately_zero(A + B + C + D)) { // 1 is one root return false; } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double R2 = R * R; double Q3 = Q * Q * Q; double R2MinusQ3 = R2 - Q3; *R2MinusQ3Ptr = R2MinusQ3; return true; } #endif /* What is the relationship between the accuracy of the root in range and the magnitude of all roots? To find out, create a bunch of cubics, and measure */ DEF_TEST(PathOpsCubicLineRoots, reporter) { if (!gPathOpsCubicLineIntersectionIdeasVerbose) { // slow; exclude it by default return; } SkRandom ran; double worstStep[256] = {0}; int errors = 0; int iters = 0; double smallestR2 = 0; double largestR2 = 0; for (int index = 0; index < 1000000000; ++index) { SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}; CubicPts cuPts = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} }}; // construct a line at a known intersection double t = ran.nextRangeF(0, 1); SkDCubic cubic; cubic.debugSet(cuPts.fPts); SkDPoint pt = cubic.ptAtT(t); // skip answers with no intersections (although note the bug!) or two, or more // see if the line / cubic has a fun range of roots double A, B, C, D; SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); D -= pt.fY; double allRoots[3] = {0}, validRoots[3] = {0}; int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); if (valid != 1) { continue; } if (realRoots == 1) { continue; } t = validRoots[0]; SkDPoint calcPt = cubic.ptAtT(t); if (calcPt.approximatelyEqual(pt)) { continue; } #if 0 double R2MinusQ3; if (r2check(A, B, C, D, &R2MinusQ3)) { smallestR2 = std::min(smallestR2, R2MinusQ3); largestR2 = std::max(largestR2, R2MinusQ3); } #endif double largest = std::max(fabs(allRoots[0]), fabs(allRoots[1])); if (realRoots == 3) { largest = std::max(largest, fabs(allRoots[2])); } int largeBits; if (largest <= 1) { #if 0 SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n", realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0], validRoots[1], validRoots[2]); #endif double smallest = std::min(allRoots[0], allRoots[1]); if (realRoots == 3) { smallest = std::min(smallest, allRoots[2]); } SkASSERT_RELEASE(smallest < 0); SkASSERT_RELEASE(smallest >= -1); largeBits = 0; } else { frexp(largest, &largeBits); SkASSERT_RELEASE(largeBits >= 0); SkASSERT_RELEASE(largeBits < 256); } double step = 1e-6; if (largeBits > 21) { step = 1e-1; } else if (largeBits > 18) { step = 1e-2; } else if (largeBits > 15) { step = 1e-3; } else if (largeBits > 12) { step = 1e-4; } else if (largeBits > 9) { step = 1e-5; } double diff; do { double newT = binary_search(cubic, step, pt, t, &iters); if (newT >= 0) { diff = fabs(t - newT); break; } step *= 1.5; SkASSERT_RELEASE(step < 1); } while (true); worstStep[largeBits] = std::max(worstStep[largeBits], diff); #if 0 { cubic.dump(); SkDebugf("\n"); SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}}; line.dump(); SkDebugf("\n"); } #endif ++errors; } SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors); SkDebugf(" steps: "); int worstLimit = SK_ARRAY_COUNT(worstStep); while (worstStep[--worstLimit] == 0) ; for (int idx2 = 0; idx2 <= worstLimit; ++idx2) { SkDebugf("%1.9g ", worstStep[idx2]); } SkDebugf("\n"); SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2); } static double testOneFailure(const CubicLineFailures& failure) { const CubicPts& c = failure.c; SkDCubic cubic; cubic.debugSet(c.fPts); const SkDPoint& pt = failure.p; double A, B, C, D; SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); D -= pt.fY; double allRoots[3] = {0}, validRoots[3] = {0}; int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); SkASSERT_RELEASE(valid == 1); SkASSERT_RELEASE(realRoots != 1); double t = validRoots[0]; SkDPoint calcPt = cubic.ptAtT(t); SkASSERT_RELEASE(!calcPt.approximatelyEqual(pt)); int iters = 0; double newT = binary_search(cubic, 0.1, pt, t, &iters); return newT; } DEF_TEST(PathOpsCubicLineFailures, reporter) { if ((false)) { // disable for now for (int index = 0; index < cubicLineFailuresCount; ++index) { const CubicLineFailures& failure = cubicLineFailures[index]; double newT = testOneFailure(failure); SkASSERT_RELEASE(newT >= 0); } } } DEF_TEST(PathOpsCubicLineOneFailure, reporter) { if ((false)) { // disable for now const CubicLineFailures& failure = cubicLineFailures[1]; double newT = testOneFailure(failure); SkASSERT_RELEASE(newT >= 0); } }