/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkCanvas.h" #include "include/core/SkPaint.h" #include "include/core/SkPathBuilder.h" #include "include/core/SkScalar.h" namespace { // Concave test void test_concave(SkCanvas* canvas, const SkPaint& paint) { canvas->translate(0, 0); canvas->drawPath(SkPath::Polygon({{20,20}, {80,20}, {30,30}, {20,80}}, false), paint); } // Reverse concave test void test_reverse_concave(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(100, 0); canvas->drawPath(SkPath::Polygon({{20,20}, {20,80}, {30,30}, {80,20}}, false), paint); canvas->restore(); } // Bowtie (intersection) void test_bowtie(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(200, 0); canvas->drawPath(SkPath::Polygon({{20,20}, {80,80}, {80,20}, {20,80}}, false), paint); canvas->restore(); } // "fake" bowtie (concave, but no intersection) void test_fake_bowtie(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(300, 0); canvas->drawPath(SkPath::Polygon({{20,20}, {50,40}, {80,20}, {80,80}, {50,60}, {20,80}}, false), paint); canvas->restore(); } // Bowtie with a smaller right hand lobe. The outer vertex of the left hand // lobe intrudes into the interior of the right hand lobe. void test_intruding_vertex(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(400, 0); canvas->drawPath(SkPath::Polygon({{20,20}, {50,50}, {68,20}, {68,80}, {50,50}, {20,80}}, false, SkPathFillType::kWinding, true), paint); canvas->restore(); } // A shape with an edge that becomes inverted on AA stroking and that also contains // a repeated start/end vertex. void test_inversion_repeat_vertex(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(400, 100); const SkPoint pts[] = { {80,50}, {40,80}, {60,20}, {20,20}, {39.99f,80}, {80,50}, }; canvas->drawPath(SkPath::Polygon(pts, SK_ARRAY_COUNT(pts), false, SkPathFillType::kWinding, true), paint); canvas->restore(); } // Fish test (intersection/concave) void test_fish(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(0, 100); canvas->drawPath(SkPath::Polygon({{20,20}, {80,80}, {70,50}, {80,20}, {20,80}, {0,50}}, false, SkPathFillType::kWinding, true), paint); canvas->restore(); } // Overlapping "Fast-forward" icon: tests coincidence of inner and outer // vertices generated by intersection. void test_fast_forward(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(100, 100); auto path = SkPathBuilder().addPolygon({{20,20}, {60,50}, {20,80}}, false) .addPolygon({{40,20}, {40,80}, {80,50}}, false) .detach(); canvas->drawPath(path, paint); canvas->restore(); } // Square polygon with a square hole. void test_hole(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(200, 100); auto path = SkPathBuilder().addPolygon({{20,20}, {80,20}, {80,80}, {20,80}}, false) .addPolygon({{30,30}, {30,70}, {70,70}, {70,30}}, false) .detach(); canvas->drawPath(path, paint); canvas->restore(); } // Star test (self-intersecting) void test_star(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(300, 100); canvas->drawPath(SkPath::Polygon({{30,20}, {50,80}, {70,20}, {20,57}, {80,57}}, false), paint); canvas->restore(); } // Exercise a case where the intersection is below a bottom edge. void test_twist(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(420, 220); canvas->scale(10, 10); const SkPoint pts[] = { {0.5f, 6}, {5.8070392608642578125f, 6.4612660408020019531f}, {-2.9186885356903076172f, 2.811046600341796875f}, {0.49999994039535522461f, -1.4124038219451904297f}, }; canvas->drawPath(SkPath::Polygon(pts, SK_ARRAY_COUNT(pts), false), paint); canvas->restore(); } // Stairstep with repeated vert (intersection) void test_stairstep(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(0, 200); canvas->drawPath(SkPath::Polygon({{50,50}, {50,20}, {80,20}, {50,50}, {20,50}, {20,80}}, false), paint); canvas->restore(); } void test_stairstep2(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(100, 200); canvas->drawPath(SkPath::Polygon({{20,60}, {35,80}, {50,60}, {65,80}, {80,60}}, false), paint); canvas->restore(); } // Overlapping segments void test_overlapping(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(200, 200); canvas->drawPath(SkPath::Polygon({{20,80}, {80,80}, {80,20}, {80,30}}, false), paint); canvas->restore(); } // Two "island" triangles inside a containing rect. // This exercises the partnering code in the tessellator. void test_partners(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(300, 200); auto path = SkPathBuilder().addPolygon({{20,80}, {80,80}, {80,20}, {20,20}}, false) .addPolygon({{30,30}, {45,50}, {30,70}}, false) .addPolygon({{70,30}, {70,70}, {55,50}}, false) .detach(); canvas->drawPath(path, paint); canvas->restore(); } // A split edge causes one half to be merged to zero winding (destroyed). // Test that the other half of the split doesn't also get zero winding. void test_winding_merged_to_zero(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(400, 350); path.moveTo(20, 80); path.moveTo(70, -0.000001f); path.lineTo(70, 0.0); path.lineTo(60, -30.0); path.lineTo(40, 20.0); path.moveTo(50, 50.0); path.lineTo(50, -50.0); path.lineTo(10, 50.0); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Monotone test 1 (point in the middle) void test_monotone_1(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(0, 300); path.moveTo(20, 20); path.quadTo(20, 50, 80, 50); path.quadTo(20, 50, 20, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Monotone test 2 (point at the top) void test_monotone_2(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(100, 300); path.moveTo(20, 20); path.lineTo(80, 30); path.quadTo(20, 20, 20, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Monotone test 3 (point at the bottom) void test_monotone_3(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(200, 300); path.moveTo(20, 80); path.lineTo(80, 70); path.quadTo(20, 80, 20, 20); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Monotone test 4 (merging of two monotones) void test_monotone_4(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(300, 300); path.moveTo(80, 25); path.lineTo(50, 39); path.lineTo(20, 25); path.lineTo(40, 45); path.lineTo(70, 50); path.lineTo(80, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Monotone test 5 (aborted merging of two monotones) void test_monotone_5(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(0, 400); path.moveTo(50, 20); path.lineTo(80, 80); path.lineTo(50, 50); path.lineTo(20, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Degenerate intersection test void test_degenerate(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(100, 400); path.moveTo(50, 20); path.lineTo(70, 30); path.lineTo(20, 50); path.moveTo(50, 20); path.lineTo(80, 80); path.lineTo(50, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Two triangles with a coincident edge. void test_coincident_edge(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(200, 400); path.moveTo(80, 20); path.lineTo(80, 80); path.lineTo(20, 80); path.moveTo(20, 20); path.lineTo(80, 80); path.lineTo(20, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Bowtie with a coincident triangle (one triangle vertex coincident with the // bowtie's intersection). void test_bowtie_coincident_triangle(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(300, 400); path.moveTo(20, 20); path.lineTo(80, 80); path.lineTo(80, 20); path.lineTo(20, 80); path.moveTo(50, 50); path.lineTo(80, 20); path.lineTo(80, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Collinear outer boundary edges. In the edge-AA codepath, this creates an overlap region // which contains a boundary edge. It can't be removed, but it must have the correct winding. void test_collinear_outer_boundary_edge(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(400, 400); path.moveTo(20, 20); path.lineTo(20, 50); path.lineTo(50, 50); path.moveTo(80, 50); path.lineTo(50, 50); path.lineTo(80, 20); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Coincident edges (big ones first, coincident vert on top). void test_coincident_edges_1(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(0, 500); path.moveTo(20, 20); path.lineTo(80, 80); path.lineTo(20, 80); path.moveTo(20, 20); path.lineTo(50, 50); path.lineTo(20, 50); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Coincident edges (small ones first, coincident vert on top). void test_coincident_edges_2(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(100, 500); path.moveTo(20, 20); path.lineTo(50, 50); path.lineTo(20, 50); path.moveTo(20, 20); path.lineTo(80, 80); path.lineTo(20, 80); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Coincident edges (small ones first, coincident vert on bottom). void test_coincident_edges_3(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(200, 500); path.moveTo(20, 80); path.lineTo(20, 50); path.lineTo(50, 50); path.moveTo(20, 80); path.lineTo(20, 20); path.lineTo(80, 20); canvas->drawPath(path.detach(), paint); canvas->restore(); } // Coincident edges (big ones first, coincident vert on bottom). void test_coincident_edges_4(SkCanvas* canvas, const SkPaint& paint) { SkPathBuilder path; canvas->save(); canvas->translate(300, 500); path.moveTo(20, 80); path.lineTo(20, 20); path.lineTo(80, 20); path.moveTo(20, 80); path.lineTo(20, 50); path.lineTo(50, 50); canvas->drawPath(path.detach(), paint); canvas->restore(); } } // namespace DEF_SIMPLE_GM(concavepaths, canvas, 500, 600) { SkPaint paint; paint.setAntiAlias(true); paint.setStyle(SkPaint::kFill_Style); test_concave(canvas, paint); test_reverse_concave(canvas, paint); test_bowtie(canvas, paint); test_fake_bowtie(canvas, paint); test_intruding_vertex(canvas, paint); test_fish(canvas, paint); test_fast_forward(canvas, paint); test_hole(canvas, paint); test_star(canvas, paint); test_twist(canvas, paint); test_inversion_repeat_vertex(canvas, paint); test_stairstep(canvas, paint); test_stairstep2(canvas, paint); test_overlapping(canvas, paint); test_partners(canvas, paint); test_winding_merged_to_zero(canvas, paint); test_monotone_1(canvas, paint); test_monotone_2(canvas, paint); test_monotone_3(canvas, paint); test_monotone_4(canvas, paint); test_monotone_5(canvas, paint); test_degenerate(canvas, paint); test_coincident_edge(canvas, paint); test_bowtie_coincident_triangle(canvas, paint); test_collinear_outer_boundary_edge(canvas, paint); test_coincident_edges_1(canvas, paint); test_coincident_edges_2(canvas, paint); test_coincident_edges_3(canvas, paint); test_coincident_edges_4(canvas, paint); }