/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkSurface.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrSurfaceContext.h" #include "src/gpu/GrSurfaceDrawContext.h" #include "src/gpu/SkGr.h" #include "tests/Test.h" // using anonymous namespace because these functions are used as template params. namespace { /** convert 0..1 srgb value to 0..1 linear */ float srgb_to_linear(float srgb) { if (srgb <= 0.04045f) { return srgb / 12.92f; } else { return powf((srgb + 0.055f) / 1.055f, 2.4f); } } /** convert 0..1 linear value to 0..1 srgb */ float linear_to_srgb(float linear) { if (linear <= 0.0031308) { return linear * 12.92f; } else { return 1.055f * powf(linear, 1.f / 2.4f) - 0.055f; } } } // namespace /** tests a conversion with an error tolerance */ template static bool check_conversion(uint32_t input, uint32_t output, float error) { // alpha should always be exactly preserved. if ((input & 0xff000000) != (output & 0xff000000)) { return false; } for (int c = 0; c < 3; ++c) { uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); float lower = std::max(0.f, (float) inputComponent - error); float upper = std::min(255.f, (float) inputComponent + error); lower = CONVERT(lower / 255.f); upper = CONVERT(upper / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); if (outputComponent < SkScalarFloorToInt(lower * 255.f) || outputComponent > SkScalarCeilToInt(upper * 255.f)) { return false; } } return true; } /** tests a forward and backward conversion with an error tolerance */ template static bool check_double_conversion(uint32_t input, uint32_t output, float error) { // alpha should always be exactly preserved. if ((input & 0xff000000) != (output & 0xff000000)) { return false; } for (int c = 0; c < 3; ++c) { uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); float lower = std::max(0.f, (float) inputComponent - error); float upper = std::min(255.f, (float) inputComponent + error); lower = FORWARD(lower / 255.f); upper = FORWARD(upper / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); uint8_t upperComponent = SkScalarCeilToInt(upper * 255.f); uint8_t lowerComponent = SkScalarFloorToInt(lower * 255.f); lower = std::max(0.f, (float) lowerComponent - error); upper = std::min(255.f, (float) upperComponent + error); lower = BACKWARD(lowerComponent / 255.f); upper = BACKWARD(upperComponent / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); upperComponent = SkScalarCeilToInt(upper * 255.f); lowerComponent = SkScalarFloorToInt(lower * 255.f); uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); if (outputComponent < lowerComponent || outputComponent > upperComponent) { return false; } } return true; } static bool check_srgb_to_linear_conversion(uint32_t srgb, uint32_t linear, float error) { return check_conversion(srgb, linear, error); } static bool check_linear_to_srgb_conversion(uint32_t linear, uint32_t srgb, float error) { return check_conversion(linear, srgb, error); } static bool check_linear_to_srgb_to_linear_conversion(uint32_t input, uint32_t output, float error) { return check_double_conversion(input, output, error); } static bool check_srgb_to_linear_to_srgb_conversion(uint32_t input, uint32_t output, float error) { return check_double_conversion(input, output, error); } static bool check_no_conversion(uint32_t input, uint32_t output, float error) { // This is a bit of a hack to check identity transformations that may lose precision. return check_srgb_to_linear_to_srgb_conversion(input, output, error); } typedef bool (*CheckFn) (uint32_t orig, uint32_t actual, float error); void read_and_check_pixels(skiatest::Reporter* reporter, GrDirectContext* dContext, GrSurfaceContext* sContext, uint32_t* origData, const SkImageInfo& dstInfo, CheckFn checker, float error, const char* subtestName) { auto [w, h] = dstInfo.dimensions(); GrPixmap readPM = GrPixmap::Allocate(dstInfo); memset(readPM.addr(), 0, sizeof(uint32_t)*w*h); if (!sContext->readPixels(dContext, readPM, {0, 0})) { ERRORF(reporter, "Could not read pixels for %s.", subtestName); return; } for (int j = 0; j < h; ++j) { for (int i = 0; i < w; ++i) { uint32_t orig = origData[j * w + i]; uint32_t read = static_cast(readPM.addr())[j * w + i]; if (!checker(orig, read, error)) { ERRORF(reporter, "Original 0x%08x, read back as 0x%08x in %s at %d, %d).", orig, read, subtestName, i, j); return; } } } } namespace { enum class Encoding { kUntagged, kLinear, kSRGB, }; } // namespace static sk_sp encoding_as_color_space(Encoding encoding) { switch (encoding) { case Encoding::kUntagged: return nullptr; case Encoding::kLinear: return SkColorSpace::MakeSRGBLinear(); case Encoding::kSRGB: return SkColorSpace::MakeSRGB(); } return nullptr; } static const char* encoding_as_str(Encoding encoding) { switch (encoding) { case Encoding::kUntagged: return "untagged"; case Encoding::kLinear: return "linear"; case Encoding::kSRGB: return "sRGB"; } return nullptr; } static constexpr int kW = 255; static constexpr int kH = 255; static std::unique_ptr make_data() { std::unique_ptr data(new uint32_t[kW * kH]); for (int j = 0; j < kH; ++j) { for (int i = 0; i < kW; ++i) { data[j * kW + i] = (0xFF << 24) | (i << 16) | (i << 8) | i; } } return data; } static std::unique_ptr make_surface_context(Encoding contextEncoding, GrRecordingContext* rContext, skiatest::Reporter* reporter) { auto surfaceContext = GrSurfaceDrawContext::Make( rContext, GrColorType::kRGBA_8888, encoding_as_color_space(contextEncoding), SkBackingFit::kExact, {kW, kH}, 1, GrMipmapped::kNo, GrProtected::kNo, kBottomLeft_GrSurfaceOrigin, SkBudgeted::kNo); if (!surfaceContext) { ERRORF(reporter, "Could not create %s surface context.", encoding_as_str(contextEncoding)); } return std::move(surfaceContext); } static void test_write_read(Encoding contextEncoding, Encoding writeEncoding, Encoding readEncoding, float error, CheckFn check, GrDirectContext* dContext, skiatest::Reporter* reporter) { auto surfaceContext = make_surface_context(contextEncoding, dContext, reporter); if (!surfaceContext) { return; } auto writeII = SkImageInfo::Make(kW, kH, kRGBA_8888_SkColorType, kPremul_SkAlphaType, encoding_as_color_space(writeEncoding)); auto data = make_data(); GrPixmap dataPM(writeII, data.get(), kW*sizeof(uint32_t)); if (!surfaceContext->writePixels(dContext, dataPM, {0, 0})) { ERRORF(reporter, "Could not write %s to %s surface context.", encoding_as_str(writeEncoding), encoding_as_str(contextEncoding)); return; } auto readII = SkImageInfo::Make(kW, kH, kRGBA_8888_SkColorType, kPremul_SkAlphaType, encoding_as_color_space(readEncoding)); SkString testName; testName.printf("write %s data to a %s context and read as %s.", encoding_as_str(writeEncoding), encoding_as_str(contextEncoding), encoding_as_str(readEncoding)); read_and_check_pixels(reporter, dContext, surfaceContext.get(), data.get(), readII, check, error, testName.c_str()); } // Test all combinations of writePixels/readPixels where the surface context/write source/read dst // are sRGB, linear, or untagged RGBA_8888. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SRGBReadWritePixels, reporter, ctxInfo) { auto context = ctxInfo.directContext(); if (!context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888_SRGB, GrRenderable::kNo).isValid()) { return; } // We allow more error on GPUs with lower precision shader variables. float error = context->priv().caps()->shaderCaps()->halfIs32Bits() ? 0.5f : 1.2f; // For the all-sRGB case, we allow a small error only for devices that have // precision variation because the sRGB data gets converted to linear and back in // the shader. float smallError = context->priv().caps()->shaderCaps()->halfIs32Bits() ? 0.0f : 1.f; /////////////////////////////////////////////////////////////////////////////////////////////// // Write sRGB data to a sRGB context - no conversion on the write. // back to sRGB - no conversion. test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kSRGB, smallError, check_no_conversion, context, reporter); // Reading back to untagged should be a pass through with no conversion. test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kUntagged, error, check_no_conversion, context, reporter); // Converts back to linear test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kLinear, error, check_srgb_to_linear_conversion, context, reporter); // Untagged source data should be interpreted as sRGB. test_write_read(Encoding::kSRGB, Encoding::kUntagged, Encoding::kSRGB, smallError, check_no_conversion, context, reporter); /////////////////////////////////////////////////////////////////////////////////////////////// // Write linear data to a sRGB context. It gets converted to sRGB on write. The reads // are all the same as the above cases where the original data was untagged. test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kSRGB, error, check_linear_to_srgb_conversion, context, reporter); // When the dst buffer is untagged there should be no conversion on the read. test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kUntagged, error, check_linear_to_srgb_conversion, context, reporter); test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kLinear, error, check_linear_to_srgb_to_linear_conversion, context, reporter); /////////////////////////////////////////////////////////////////////////////////////////////// // Write data to an untagged context. The write does no conversion no matter what encoding the // src data has. for (auto writeEncoding : {Encoding::kSRGB, Encoding::kUntagged, Encoding::kLinear}) { // The read from untagged to sRGB also does no conversion. test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kSRGB, error, check_no_conversion, context, reporter); // Reading untagged back as untagged should do no conversion. test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kUntagged, error, check_no_conversion, context, reporter); // Reading untagged back as linear does convert (context is source, so treated as sRGB), // dst is tagged. test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kLinear, error, check_srgb_to_linear_conversion, context, reporter); } /////////////////////////////////////////////////////////////////////////////////////////////// // Write sRGB data to a linear context - converts to sRGB on the write. // converts back to sRGB on read. test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kSRGB, error, check_srgb_to_linear_to_srgb_conversion, context, reporter); // Reading untagged data from linear currently does no conversion. test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kUntagged, error, check_srgb_to_linear_conversion, context, reporter); // Stays linear when read. test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kLinear, error, check_srgb_to_linear_conversion, context, reporter); // Untagged source data should be interpreted as sRGB. test_write_read(Encoding::kLinear, Encoding::kUntagged, Encoding::kSRGB, error, check_srgb_to_linear_to_srgb_conversion, context, reporter); /////////////////////////////////////////////////////////////////////////////////////////////// // Write linear data to a linear context. Does no conversion. // Reading to sRGB does a conversion. test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kSRGB, error, check_linear_to_srgb_conversion, context, reporter); // Reading to untagged does no conversion. test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kUntagged, error, check_no_conversion, context, reporter); // Stays linear when read. test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kLinear, error, check_no_conversion, context, reporter); }