/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBicubicImageFilter.h" #include "SkBitmap.h" #include "SkBitmapDevice.h" #include "SkBitmapSource.h" #include "SkBlurImageFilter.h" #include "SkCanvas.h" #include "SkColorFilterImageFilter.h" #include "SkColorMatrixFilter.h" #include "SkDeviceImageFilterProxy.h" #include "SkDisplacementMapEffect.h" #include "SkDropShadowImageFilter.h" #include "SkFlattenableBuffers.h" #include "SkLightingImageFilter.h" #include "SkMatrixConvolutionImageFilter.h" #include "SkMergeImageFilter.h" #include "SkMorphologyImageFilter.h" #include "SkOffsetImageFilter.h" #include "SkPicture.h" #include "SkRect.h" #include "SkTileImageFilter.h" #include "SkXfermodeImageFilter.h" #include "Test.h" #if SK_SUPPORT_GPU #include "GrContextFactory.h" #include "SkGpuDevice.h" #endif static const int kBitmapSize = 4; namespace { class MatrixTestImageFilter : public SkImageFilter { public: MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) : SkImageFilter(0), fReporter(reporter), fExpectedMatrix(expectedMatrix) { } virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context& ctx, SkBitmap* result, SkIPoint* offset) const SK_OVERRIDE { REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix); return true; } SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(MatrixTestImageFilter) protected: explicit MatrixTestImageFilter(SkReadBuffer& buffer) : SkImageFilter(0) { fReporter = static_cast(buffer.readFunctionPtr()); buffer.readMatrix(&fExpectedMatrix); } virtual void flatten(SkWriteBuffer& buffer) const SK_OVERRIDE { buffer.writeFunctionPtr(fReporter); buffer.writeMatrix(fExpectedMatrix); } private: skiatest::Reporter* fReporter; SkMatrix fExpectedMatrix; }; } static void make_small_bitmap(SkBitmap& bitmap) { bitmap.allocN32Pixels(kBitmapSize, kBitmapSize); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int i = kBitmapSize / 4; for (int y = 0; y < kBitmapSize; y += i) { for (int x = 0; x < kBitmapSize; x += i) { canvas.save(); canvas.translate(SkIntToScalar(x), SkIntToScalar(y)); canvas.drawRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i), 0, SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas.drawRect(SkRect::MakeXYWH(0, SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas.restore(); } } } static SkImageFilter* make_scale(float amount, SkImageFilter* input = NULL) { SkScalar s = amount; SkScalar matrix[20] = { s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0 }; SkAutoTUnref filter(SkColorMatrixFilter::Create(matrix)); return SkColorFilterImageFilter::Create(filter, input); } static SkImageFilter* make_grayscale(SkImageFilter* input = NULL, const SkImageFilter::CropRect* cropRect = NULL) { SkScalar matrix[20]; memset(matrix, 0, 20 * sizeof(SkScalar)); matrix[0] = matrix[5] = matrix[10] = 0.2126f; matrix[1] = matrix[6] = matrix[11] = 0.7152f; matrix[2] = matrix[7] = matrix[12] = 0.0722f; matrix[18] = 1.0f; SkAutoTUnref filter(SkColorMatrixFilter::Create(matrix)); return SkColorFilterImageFilter::Create(filter, input, cropRect); } DEF_TEST(ImageFilter, reporter) { { // Check that two non-clipping color matrices concatenate into a single filter. SkAutoTUnref halfBrightness(make_scale(0.5f)); SkAutoTUnref quarterBrightness(make_scale(0.5f, halfBrightness)); REPORTER_ASSERT(reporter, NULL == quarterBrightness->getInput(0)); } { // Check that a clipping color matrix followed by a grayscale does not concatenate into a single filter. SkAutoTUnref doubleBrightness(make_scale(2.0f)); SkAutoTUnref halfBrightness(make_scale(0.5f, doubleBrightness)); REPORTER_ASSERT(reporter, NULL != halfBrightness->getInput(0)); } { // Check that a color filter image filter without a crop rect can be // expressed as a color filter. SkAutoTUnref gray(make_grayscale()); REPORTER_ASSERT(reporter, true == gray->asColorFilter(NULL)); } { // Check that a color filter image filter with a crop rect cannot // be expressed as a color filter. SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(0, 0, 100, 100)); SkAutoTUnref grayWithCrop(make_grayscale(NULL, &cropRect)); REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(NULL)); } { // Tests pass by not asserting SkBitmap bitmap, result; make_small_bitmap(bitmap); result.allocN32Pixels(kBitmapSize, kBitmapSize); { // This tests for : // 1 ) location at (0,0,1) SkPoint3 location(0, 0, SK_Scalar1); // 2 ) location and target at same value SkPoint3 target(location.fX, location.fY, location.fZ); // 3 ) large negative specular exponent value SkScalar specularExponent = -1000; SkAutoTUnref bmSrc(SkBitmapSource::Create(bitmap)); SkPaint paint; paint.setImageFilter(SkLightingImageFilter::CreateSpotLitSpecular( location, target, specularExponent, 180, 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, bmSrc))->unref(); SkCanvas canvas(result); SkRect r = SkRect::MakeWH(SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize)); canvas.drawRect(r, paint); } { // This tests for scale bringing width to 0 SkSize scale = SkSize::Make(-0.001f, SK_Scalar1); SkAutoTUnref bmSrc(SkBitmapSource::Create(bitmap)); SkAutoTUnref bicubic( SkBicubicImageFilter::CreateMitchell(scale, bmSrc)); SkBitmapDevice device(bitmap); SkDeviceImageFilterProxy proxy(&device); SkIPoint loc = SkIPoint::Make(0, 0); // An empty input should early return and return false SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeEmpty()); REPORTER_ASSERT(reporter, !bicubic->filterImage(&proxy, bitmap, ctx, &result, &loc)); } } } static void test_crop_rects(SkBaseDevice* device, skiatest::Reporter* reporter) { // Check that all filters offset to their absolute crop rect, // unaffected by the input crop rect. // Tests pass by not asserting. SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); SkDeviceImageFilterProxy proxy(device); SkImageFilter::CropRect inputCropRect(SkRect::MakeXYWH(8, 13, 80, 80)); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(20, 30, 60, 60)); SkAutoTUnref input(make_grayscale(NULL, &inputCropRect)); SkAutoTUnref cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode)); SkPoint3 location(0, 0, SK_Scalar1); SkPoint3 target(SK_Scalar1, SK_Scalar1, SK_Scalar1); SkScalar kernel[9] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(3, 3); SkScalar gain = SK_Scalar1, bias = 0; SkImageFilter* filters[] = { SkColorFilterImageFilter::Create(cf.get(), input.get(), &cropRect), SkDisplacementMapEffect::Create(SkDisplacementMapEffect::kR_ChannelSelectorType, SkDisplacementMapEffect::kB_ChannelSelectorType, 40.0f, input.get(), input.get(), &cropRect), SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkDropShadowImageFilter::Create(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input.get(), &cropRect), SkLightingImageFilter::CreatePointLitDiffuse(location, SK_ColorGREEN, 0, 0, input.get(), &cropRect), SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input.get(), &cropRect), SkMatrixConvolutionImageFilter::Create(kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, input.get(), &cropRect), SkMergeImageFilter::Create(input.get(), input.get(), SkXfermode::kSrcOver_Mode, &cropRect), SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect), SkDilateImageFilter::Create(3, 2, input.get(), &cropRect), SkErodeImageFilter::Create(2, 3, input.get(), &cropRect), SkTileImageFilter::Create(inputCropRect.rect(), cropRect.rect(), input.get()), SkXfermodeImageFilter::Create(SkXfermode::Create(SkXfermode::kSrcOver_Mode), input.get(), input.get(), &cropRect), }; for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { SkImageFilter* filter = filters[i]; SkBitmap result; SkIPoint offset; SkString str; str.printf("filter %d", static_cast(i)); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest()); REPORTER_ASSERT_MESSAGE(reporter, filter->filterImage(&proxy, bitmap, ctx, &result, &offset), str.c_str()); REPORTER_ASSERT_MESSAGE(reporter, offset.fX == 20 && offset.fY == 30, str.c_str()); } for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) { SkSafeUnref(filters[i]); } } DEF_TEST(ImageFilterCropRect, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkBitmapDevice device(temp); test_crop_rects(&device, reporter); } DEF_TEST(ImageFilterMatrixTest, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkBitmapDevice device(temp); SkCanvas canvas(&device); canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); SkMatrix expectedMatrix = canvas.getTotalMatrix(); SkPicture picture; SkCanvas* recordingCanvas = picture.beginRecording(100, 100, SkPicture::kOptimizeForClippedPlayback_RecordingFlag); SkPaint paint; SkAutoTUnref imageFilter( new MatrixTestImageFilter(reporter, expectedMatrix)); paint.setImageFilter(imageFilter.get()); SkCanvas::SaveFlags saveFlags = static_cast( SkCanvas::kHasAlphaLayer_SaveFlag | SkCanvas::kFullColorLayer_SaveFlag); recordingCanvas->saveLayer(NULL, &paint, saveFlags); SkPaint solidPaint; solidPaint.setColor(0xFFFFFFFF); recordingCanvas->save(); recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); recordingCanvas->restore(); // scale recordingCanvas->restore(); // saveLayer picture.endRecording(); canvas.drawPicture(picture); } #if SK_SUPPORT_GPU DEF_GPUTEST(ImageFilterCropRectGPU, reporter, factory) { GrContext* context = factory->get(static_cast(0)); SkAutoTUnref device(SkGpuDevice::Create(context, SkImageInfo::MakeN32Premul(100, 100), 0)); test_crop_rects(device, reporter); } #endif