/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkM44.h" #include "include/core/SkPaint.h" #include "include/core/SkRRect.h" #include "include/utils/SkRandom.h" #include "samplecode/Sample.h" #include "tools/Resources.h" struct VSphere { SkV2 fCenter; SkScalar fRadius; VSphere(SkV2 center, SkScalar radius) : fCenter(center), fRadius(radius) {} bool contains(SkV2 v) const { return (v - fCenter).length() <= fRadius; } SkV2 pinLoc(SkV2 p) const { auto v = p - fCenter; if (v.length() > fRadius) { v *= (fRadius / v.length()); } return fCenter + v; } SkV3 computeUnitV3(SkV2 v) const { v = (v - fCenter) * (1 / fRadius); SkScalar len2 = v.lengthSquared(); if (len2 > 1) { v = v.normalize(); len2 = 1; } SkScalar z = SkScalarSqrt(1 - len2); return {v.x, v.y, z}; } struct RotateInfo { SkV3 fAxis; SkScalar fAngle; }; RotateInfo computeRotationInfo(SkV2 a, SkV2 b) const { SkV3 u = this->computeUnitV3(a); SkV3 v = this->computeUnitV3(b); SkV3 axis = u.cross(v); SkScalar length = axis.length(); if (!SkScalarNearlyZero(length)) { return {axis * (1.0f / length), acos(u.dot(v))}; } return {{0, 0, 0}, 0}; } SkM44 computeRotation(SkV2 a, SkV2 b) const { auto [axis, angle] = this->computeRotationInfo(a, b); return SkM44::Rotate(axis, angle); } }; static SkM44 inv(const SkM44& m) { SkM44 inverse; SkAssertResult(m.invert(&inverse)); return inverse; } class Sample3DView : public Sample { protected: float fNear = 0.05f; float fFar = 4; float fAngle = SK_ScalarPI / 12; SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 }; SkV3 fCOA { 0, 0, 0 }; SkV3 fUp { 0, 1, 0 }; public: void saveCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) { SkM44 camera = Sk3LookAt(fEye, fCOA, fUp), perspective = Sk3Perspective(fNear, fFar, fAngle), viewport = SkM44::Translate(area.centerX(), area.centerY(), 0) * SkM44::Scale(area.width()*0.5f, area.height()*0.5f, zscale); // want "world" to be in our big coordinates (e.g. area), so apply this inverse // as part of our "camera". canvas->experimental_saveCamera(viewport * perspective, camera * inv(viewport)); } }; struct Face { SkScalar fRx, fRy; SkColor fColor; static SkM44 T(SkScalar x, SkScalar y, SkScalar z) { return SkM44::Translate(x, y, z); } static SkM44 R(SkV3 axis, SkScalar rad) { return SkM44::Rotate(axis, rad); } SkM44 asM44(SkScalar scale) const { return R({0,1,0}, fRy) * R({1,0,0}, fRx) * T(0, 0, scale); } }; static bool front(const SkM44& m) { SkM44 m2(SkM44::kUninitialized_Constructor); if (!m.invert(&m2)) { m2.setIdentity(); } /* * Classically we want to dot the transpose(inverse(ctm)) with our surface normal. * In this case, the normal is known to be {0, 0, 1}, so we only actually need to look * at the z-scale of the inverse (the transpose doesn't change the main diagonal, so * no need to actually transpose). */ return m2.rc(2,2) > 0; } const Face faces[] = { { 0, 0, SK_ColorRED }, // front { 0, SK_ScalarPI, SK_ColorGREEN }, // back { SK_ScalarPI/2, 0, SK_ColorBLUE }, // top {-SK_ScalarPI/2, 0, SK_ColorCYAN }, // bottom { 0, SK_ScalarPI/2, SK_ColorMAGENTA }, // left { 0,-SK_ScalarPI/2, SK_ColorYELLOW }, // right }; #include "include/effects/SkRuntimeEffect.h" struct LightOnSphere { SkV2 fLoc; SkScalar fDistance; SkScalar fRadius; SkV3 computeWorldPos(const VSphere& s) const { return s.computeUnitV3(fLoc) * fDistance; } void draw(SkCanvas* canvas) const { SkPaint paint; paint.setAntiAlias(true); paint.setColor(SK_ColorWHITE); canvas->drawCircle(fLoc.x, fLoc.y, fRadius + 2, paint); paint.setColor(SK_ColorBLACK); canvas->drawCircle(fLoc.x, fLoc.y, fRadius, paint); } }; #include "include/core/SkTime.h" class RotateAnimator { SkV3 fAxis = {0, 0, 0}; SkScalar fAngle = 0, fPrevAngle = 1234567; double fNow = 0, fPrevNow = 0; SkScalar fAngleSpeed = 0, fAngleSign = 1; static constexpr double kSlowDown = 4; static constexpr SkScalar kMaxSpeed = 16; public: void update(SkV3 axis, SkScalar angle) { if (angle != fPrevAngle) { fPrevAngle = fAngle; fAngle = angle; fPrevNow = fNow; fNow = SkTime::GetSecs(); fAxis = axis; } } SkM44 rotation() { if (fAngleSpeed > 0) { double now = SkTime::GetSecs(); double dtime = now - fPrevNow; fPrevNow = now; double delta = fAngleSign * fAngleSpeed * dtime; fAngle += delta; fAngleSpeed -= kSlowDown * dtime; if (fAngleSpeed < 0) { fAngleSpeed = 0; } } return SkM44::Rotate(fAxis, fAngle); } void start() { if (fPrevNow != fNow) { fAngleSpeed = (fAngle - fPrevAngle) / (fNow - fPrevNow); fAngleSign = fAngleSpeed < 0 ? -1 : 1; fAngleSpeed = std::min(kMaxSpeed, std::abs(fAngleSpeed)); } else { fAngleSpeed = 0; } fPrevNow = SkTime::GetSecs(); fAngle = 0; } void reset() { fAngleSpeed = 0; fAngle = 0; fPrevAngle = 1234567; } bool isAnimating() const { return fAngleSpeed != 0; } }; class SampleCubeBase : public Sample3DView { enum { DX = 400, DY = 300 }; SkM44 fWorldToClick, fClickToWorld; SkM44 fRotation; // part of model RotateAnimator fRotateAnimator; protected: enum Flags { kCanRunOnCPU = 1 << 0, kShowLightDome = 1 << 1, }; LightOnSphere fLight = {{200 + DX, 200 + DY}, 800, 12}; VSphere fSphere; Flags fFlags; public: SampleCubeBase(Flags flags) : fSphere({200 + DX, 200 + DY}, 400) , fFlags(flags) {} bool onChar(SkUnichar uni) override { switch (uni) { case 'Z': fLight.fDistance += 10; return true; case 'z': fLight.fDistance -= 10; return true; } return this->Sample3DView::onChar(uni); } virtual void drawContent(SkCanvas* canvas, SkColor, int index, bool drawFront) = 0; void setClickToWorld(SkCanvas* canvas, const SkM44& clickM) { auto l2d = canvas->getLocalToDevice(); fWorldToClick = inv(clickM) * l2d; fClickToWorld = inv(fWorldToClick); } void onDrawContent(SkCanvas* canvas) override { if (!canvas->getGrContext() && !(fFlags & kCanRunOnCPU)) { return; } SkM44 clickM = canvas->getLocalToDevice(); canvas->save(); canvas->translate(DX, DY); this->saveCamera(canvas, {0, 0, 400, 400}, 200); this->setClickToWorld(canvas, clickM); for (bool drawFront : {false, true}) { int index = 0; for (auto f : faces) { SkAutoCanvasRestore acr(canvas, true); SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation SkM44 m = fRotateAnimator.rotation() * fRotation * f.asM44(200); canvas->concat44(trans * m * inv(trans)); this->drawContent(canvas, f.fColor, index++, drawFront); } } canvas->restore(); // camera canvas->restore(); // center the content in the window if (fFlags & kShowLightDome){ fLight.draw(canvas); SkPaint paint; paint.setAntiAlias(true); paint.setStyle(SkPaint::kStroke_Style); paint.setColor(0x40FF0000); canvas->drawCircle(fSphere.fCenter.x, fSphere.fCenter.y, fSphere.fRadius, paint); canvas->drawLine(fSphere.fCenter.x, fSphere.fCenter.y - fSphere.fRadius, fSphere.fCenter.x, fSphere.fCenter.y + fSphere.fRadius, paint); canvas->drawLine(fSphere.fCenter.x - fSphere.fRadius, fSphere.fCenter.y, fSphere.fCenter.x + fSphere.fRadius, fSphere.fCenter.y, paint); } } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { SkV2 p = fLight.fLoc - SkV2{x, y}; if (p.length() <= fLight.fRadius) { Click* c = new Click(); c->fMeta.setS32("type", 0); return c; } if (fSphere.contains({x, y})) { Click* c = new Click(); c->fMeta.setS32("type", 1); fRotation = fRotateAnimator.rotation() * fRotation; fRotateAnimator.reset(); return c; } return nullptr; } bool onClick(Click* click) override { #if 0 auto L = fWorldToClick * fLight.fPos; SkPoint c = project(fClickToWorld, {click->fCurr.fX, click->fCurr.fY, L.z/L.w, 1}); fLight.update(c.fX, c.fY); #endif if (click->fMeta.hasS32("type", 0)) { fLight.fLoc = fSphere.pinLoc({click->fCurr.fX, click->fCurr.fY}); return true; } if (click->fMeta.hasS32("type", 1)) { if (click->fState == skui::InputState::kUp) { fRotation = fRotateAnimator.rotation() * fRotation; fRotateAnimator.start(); } else { auto [axis, angle] = fSphere.computeRotationInfo( {click->fOrig.fX, click->fOrig.fY}, {click->fCurr.fX, click->fCurr.fY}); fRotateAnimator.update(axis, angle); } return true; } return true; } bool onAnimate(double nanos) override { return fRotateAnimator.isAnimating(); } private: typedef Sample3DView INHERITED; }; class SampleBump3D : public SampleCubeBase { sk_sp fBmpShader, fImgShader; sk_sp fEffect; SkRRect fRR; public: SampleBump3D() : SampleCubeBase(kShowLightDome) {} SkString name() override { return SkString("bump3d"); } void onOnceBeforeDraw() override { fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50); auto img = GetResourceAsImage("images/brickwork-texture.jpg"); fImgShader = img->makeShader(SkMatrix::MakeScale(2, 2)); img = GetResourceAsImage("images/brickwork_normal-map.jpg"); fBmpShader = img->makeShader(SkMatrix::MakeScale(2, 2)); const char code[] = R"( in fragmentProcessor color_map; in fragmentProcessor normal_map; uniform float4x4 localToWorld; uniform float4x4 localToWorldAdjInv; uniform float3 lightPos; float3 convert_normal_sample(half4 c) { float3 n = 2 * c.rgb - 1; n.y = -n.y; return n; } void main(float2 p, inout half4 color) { float3 norm = convert_normal_sample(sample(normal_map, p)); float3 plane_norm = normalize(localToWorldAdjInv * float4(norm, 0)).xyz; float3 plane_pos = (localToWorld * float4(p, 0, 1)).xyz; float3 light_dir = normalize(lightPos - plane_pos); float ambient = 0.2; float dp = dot(plane_norm, light_dir); float scale = min(ambient + max(dp, 0), 1); color = sample(color_map, p) * half4(float4(scale, scale, scale, 1)); } )"; auto [effect, error] = SkRuntimeEffect::Make(SkString(code)); if (!effect) { SkDebugf("runtime error %s\n", error.c_str()); } fEffect = effect; } void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override { if (!drawFront || !front(canvas->getLocalToDevice())) { return; } auto adj_inv = [](const SkM44& m) { // Normals need to be transformed by the inverse-transpose of the upper-left 3x3 portion // (scale + rotate) of the local to world matrix. (If the local to world only has // uniform scale, we can use its upper-left 3x3 directly, but we don't know if that's // the case here, so go the extra mile.) SkM44 rot_scale(m.rc(0, 0), m.rc(0, 1), m.rc(0, 2), 0, m.rc(1, 0), m.rc(1, 1), m.rc(1, 2), 0, m.rc(2, 0), m.rc(2, 1), m.rc(2, 2), 0, 0, 0, 0, 1); SkM44 inv(SkM44::kUninitialized_Constructor); SkAssertResult(rot_scale.invert(&inv)); return inv.transpose(); }; struct Uniforms { SkM44 fLocalToWorld; SkM44 fLocalToWorldAdjInv; SkV3 fLightPos; } uni; uni.fLocalToWorld = canvas->experimental_getLocalToWorld(); uni.fLocalToWorldAdjInv = adj_inv(uni.fLocalToWorld); uni.fLightPos = fLight.computeWorldPos(fSphere); sk_sp data = SkData::MakeWithCopy(&uni, sizeof(uni)); sk_sp children[] = { fImgShader, fBmpShader }; SkPaint paint; paint.setColor(color); paint.setShader(fEffect->makeShader(data, children, 2, nullptr, true)); canvas->drawRRect(fRR, paint); } }; DEF_SAMPLE( return new SampleBump3D; ) #include "modules/skottie/include/Skottie.h" class SampleSkottieCube : public SampleCubeBase { sk_sp fAnim[6]; public: SampleSkottieCube() : SampleCubeBase(kCanRunOnCPU) {} SkString name() override { return SkString("skottie3d"); } void onOnceBeforeDraw() override { const char* files[] = { "skottie/skottie-chained-mattes.json", "skottie/skottie-gradient-ramp.json", "skottie/skottie_sample_2.json", "skottie/skottie-3d-3planes.json", "skottie/skottie-text-animator-4.json", "skottie/skottie-motiontile-effect-phase.json", }; for (unsigned i = 0; i < SK_ARRAY_COUNT(files); ++i) { if (auto stream = GetResourceAsStream(files[i])) { fAnim[i] = skottie::Animation::Make(stream.get()); } } } void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override { if (!drawFront || !front(canvas->getLocalToDevice())) { return; } SkPaint paint; paint.setColor(color); SkRect r = {0, 0, 400, 400}; canvas->drawRect(r, paint); fAnim[index]->render(canvas, &r); } bool onAnimate(double nanos) override { for (auto& anim : fAnim) { SkScalar dur = anim->duration(); SkScalar t = fmod(1e-9 * nanos, dur) / dur; anim->seek(t); } return true; } }; DEF_SAMPLE( return new SampleSkottieCube; )