/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "nanobench.h" #include "AndroidCodecBench.h" #include "Benchmark.h" #include "BitmapRegionDecoderBench.h" #include "CodecBench.h" #include "CodecBenchPriv.h" #include "ColorCodecBench.h" #include "CrashHandler.h" #include "GMBench.h" #include "ProcStats.h" #include "ResultsWriter.h" #include "RecordingBench.h" #include "SKPAnimationBench.h" #include "SKPBench.h" #include "Stats.h" #include "SkAndroidCodec.h" #include "SkAutoMalloc.h" #include "SkBBoxHierarchy.h" #include "SkBitmapRegionDecoder.h" #include "SkCanvas.h" #include "SkCodec.h" #include "SkCommonFlags.h" #include "SkCommonFlagsConfig.h" #include "SkData.h" #include "SkGraphics.h" #include "SkLeanWindows.h" #include "SkOSFile.h" #include "SkOSPath.h" #include "SkPictureRecorder.h" #include "SkPictureUtils.h" #include "SkSVGDOM.h" #include "SkScan.h" #include "SkString.h" #include "SkSurface.h" #include "SkTaskGroup.h" #include "SkThreadUtils.h" #include "ThermalManager.h" #include #ifndef SK_BUILD_FOR_WIN32 #include #endif #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK #include "nanobenchAndroid.h" #endif #if SK_SUPPORT_GPU #include "gl/GrGLDefines.h" #include "GrCaps.h" #include "GrContextFactory.h" #include "gl/GrGLUtil.h" using sk_gpu_test::GrContextFactory; using sk_gpu_test::TestContext; std::unique_ptr gGrFactory; #endif struct GrContextOptions; static const int kAutoTuneLoops = 0; static const int kDefaultLoops = #ifdef SK_DEBUG 1; #else kAutoTuneLoops; #endif static SkString loops_help_txt() { SkString help; help.printf("Number of times to run each bench. Set this to %d to auto-" "tune for each bench. Timings are only reported when auto-tuning.", kAutoTuneLoops); return help; } static SkString to_string(int n) { SkString str; str.appendS32(n); return str; } DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str()); DEFINE_int32(samples, 10, "Number of samples to measure for each bench."); DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples."); DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead."); DEFINE_double(overheadGoal, 0.0001, "Loop until timer overhead is at most this fraction of our measurments."); DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU."); DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag."); DEFINE_string(outResultsFile, "", "If given, write results here as JSON."); DEFINE_int32(maxCalibrationAttempts, 3, "Try up to this many times to guess loops for a bench, or skip the bench."); DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this."); DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs."); DEFINE_string(scales, "1.0", "Space-separated scales for SKPs."); DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom " "function that ping-pongs between 1.0 and zoomMax."); DEFINE_bool(bbh, true, "Build a BBH for SKPs?"); DEFINE_bool(lite, false, "Use SkLiteRecorder in recording benchmarks?"); DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?"); DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?"); DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run."); DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test."); DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?"); DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json"); DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out"); DEFINE_string(useThermalManager, "0,1,10,1000", "enabled,threshold,sleepTimeMs,TimeoutMs for " "thermalManager\n"); DEFINE_string(sourceType, "", "Apply usual --match rules to source type: bench, gm, skp, image, etc."); DEFINE_string(benchType, "", "Apply usual --match rules to bench type: micro, recording, piping, playback, skcodec, etc."); static double now_ms() { return SkTime::GetNSecs() * 1e-6; } static SkString humanize(double ms) { if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6)); return HumanizeMs(ms); } #define HUMANIZE(ms) humanize(ms).c_str() bool Target::init(SkImageInfo info, Benchmark* bench) { if (Benchmark::kRaster_Backend == config.backend) { this->surface = SkSurface::MakeRaster(info); if (!this->surface) { return false; } } return true; } bool Target::capturePixels(SkBitmap* bmp) { SkCanvas* canvas = this->getCanvas(); if (!canvas) { return false; } bmp->setInfo(canvas->imageInfo()); if (!canvas->readPixels(bmp, 0, 0)) { SkDebugf("Can't read canvas pixels.\n"); return false; } return true; } #if SK_SUPPORT_GPU struct GPUTarget : public Target { explicit GPUTarget(const Config& c) : Target(c), context(nullptr) { } TestContext* context; void setup() override { this->context->makeCurrent(); // Make sure we're done with whatever came before. this->context->finish(); } void endTiming() override { if (this->context) { this->context->waitOnSyncOrSwap(); } } void fence() override { this->context->finish(); } bool needsFrameTiming(int* maxFrameLag) const override { if (!this->context->getMaxGpuFrameLag(maxFrameLag)) { // Frame lag is unknown. *maxFrameLag = FLAGS_gpuFrameLag; } return true; } bool init(SkImageInfo info, Benchmark* bench) override { uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0; SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); this->surface = SkSurface::MakeRenderTarget(gGrFactory->get(this->config.ctxType, this->config.ctxOptions), SkBudgeted::kNo, info, this->config.samples, &props); this->context = gGrFactory->getContextInfo(this->config.ctxType, this->config.ctxOptions).testContext(); if (!this->surface.get()) { return false; } if (!this->context->fenceSyncSupport()) { SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. " "Timings might not be accurate.\n", this->config.name.c_str()); } return true; } void fillOptions(ResultsWriter* log) override { const GrGLubyte* version; if (this->context->backend() == kOpenGL_GrBackend) { const GrGLInterface* gl = reinterpret_cast(this->context->backendContext()); GR_GL_CALL_RET(gl, version, GetString(GR_GL_VERSION)); log->configOption("GL_VERSION", (const char*)(version)); GR_GL_CALL_RET(gl, version, GetString(GR_GL_RENDERER)); log->configOption("GL_RENDERER", (const char*) version); GR_GL_CALL_RET(gl, version, GetString(GR_GL_VENDOR)); log->configOption("GL_VENDOR", (const char*) version); GR_GL_CALL_RET(gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version); } } }; #endif static double time(int loops, Benchmark* bench, Target* target) { SkCanvas* canvas = target->getCanvas(); if (canvas) { canvas->clear(SK_ColorWHITE); } bench->preDraw(canvas); double start = now_ms(); canvas = target->beginTiming(canvas); bench->draw(loops, canvas); if (canvas) { canvas->flush(); } target->endTiming(); double elapsed = now_ms() - start; bench->postDraw(canvas); return elapsed; } static double estimate_timer_overhead() { double overhead = 0; for (int i = 0; i < FLAGS_overheadLoops; i++) { double start = now_ms(); overhead += now_ms() - start; } return overhead / FLAGS_overheadLoops; } static int detect_forever_loops(int loops) { // look for a magic run-forever value if (loops < 0) { loops = SK_MaxS32; } return loops; } static int clamp_loops(int loops) { if (loops < 1) { SkDebugf("ERROR: clamping loops from %d to 1. " "There's probably something wrong with the bench.\n", loops); return 1; } if (loops > FLAGS_maxLoops) { SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops); return FLAGS_maxLoops; } return loops; } static bool write_canvas_png(Target* target, const SkString& filename) { if (filename.isEmpty()) { return false; } if (target->getCanvas() && kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) { return false; } SkBitmap bmp; if (!target->capturePixels(&bmp)) { return false; } SkString dir = SkOSPath::Dirname(filename.c_str()); if (!sk_mkdir(dir.c_str())) { SkDebugf("Can't make dir %s.\n", dir.c_str()); return false; } SkFILEWStream stream(filename.c_str()); if (!stream.isValid()) { SkDebugf("Can't write %s.\n", filename.c_str()); return false; } if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) { SkDebugf("Can't encode a PNG.\n"); return false; } return true; } static int kFailedLoops = -2; static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) { // First figure out approximately how many loops of bench it takes to make overhead negligible. double bench_plus_overhead = 0.0; int round = 0; int loops = bench->calculateLoops(FLAGS_loops); if (kAutoTuneLoops == loops) { while (bench_plus_overhead < overhead) { if (round++ == FLAGS_maxCalibrationAttempts) { SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n", bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead)); return kFailedLoops; } bench_plus_overhead = time(1, bench, target); } } // Later we'll just start and stop the timer once but loop N times. // We'll pick N to make timer overhead negligible: // // overhead // ------------------------- < FLAGS_overheadGoal // overhead + N * Bench Time // // where bench_plus_overhead ~=~ overhead + Bench Time. // // Doing some math, we get: // // (overhead / FLAGS_overheadGoal) - overhead // ------------------------------------------ < N // bench_plus_overhead - overhead) // // Luckily, this also works well in practice. :) if (kAutoTuneLoops == loops) { const double numer = overhead / FLAGS_overheadGoal - overhead; const double denom = bench_plus_overhead - overhead; loops = (int)ceil(numer / denom); loops = clamp_loops(loops); } else { loops = detect_forever_loops(loops); } return loops; } static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) { // First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs. int loops = bench->calculateLoops(FLAGS_loops); if (kAutoTuneLoops == loops) { loops = 1; double elapsed = 0; do { if (1<<30 == loops) { // We're about to wrap. Something's wrong with the bench. loops = 0; break; } loops *= 2; // If the GPU lets frames lag at all, we need to make sure we're timing // _this_ round, not still timing last round. for (int i = 0; i < maxGpuFrameLag; i++) { elapsed = time(loops, bench, target); } } while (elapsed < FLAGS_gpuMs); // We've overshot at least a little. Scale back linearly. loops = (int)ceil(loops * FLAGS_gpuMs / elapsed); loops = clamp_loops(loops); // Make sure we're not still timing our calibration. target->fence(); } else { loops = detect_forever_loops(loops); } // Pretty much the same deal as the calibration: do some warmup to make // sure we're timing steady-state pipelined frames. for (int i = 0; i < maxGpuFrameLag - 1; i++) { time(loops, bench, target); } return loops; } #if SK_SUPPORT_GPU #define kBogusContextType GrContextFactory::kNativeGL_ContextType #define kBogusContextOptions GrContextFactory::ContextOptions::kNone #else #define kBogusContextType 0 #define kBogusContextOptions 0 #endif static void create_config(const SkCommandLineConfig* config, SkTArray* configs) { #if SK_SUPPORT_GPU if (const auto* gpuConfig = config->asConfigGpu()) { if (!FLAGS_gpu) return; const auto ctxType = gpuConfig->getContextType(); const auto ctxOptions = gpuConfig->getContextOptions(); const auto sampleCount = gpuConfig->getSamples(); if (const GrContext* ctx = gGrFactory->get(ctxType, ctxOptions)) { const auto maxSampleCount = ctx->caps()->maxSampleCount(); if (sampleCount > ctx->caps()->maxSampleCount()) { SkDebugf("Configuration sample count %d exceeds maximum %d.\n", sampleCount, maxSampleCount); return; } } else { SkDebugf("No context was available matching config type and options.\n"); return; } Config target = { gpuConfig->getTag(), Benchmark::kGPU_Backend, gpuConfig->getColorType(), kPremul_SkAlphaType, sk_ref_sp(gpuConfig->getColorSpace()), sampleCount, ctxType, ctxOptions, gpuConfig->getUseDIText() }; configs->push_back(target); return; } #endif #define CPU_CONFIG(name, backend, color, alpha, colorSpace) \ if (config->getTag().equals(#name)) { \ Config config = { \ SkString(#name), Benchmark::backend, color, alpha, colorSpace, \ 0, kBogusContextType, kBogusContextOptions, false \ }; \ configs->push_back(config); \ return; \ } if (FLAGS_cpu) { CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType, nullptr) CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType, nullptr) CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType, nullptr) auto srgbColorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named); CPU_CONFIG(srgb, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType, srgbColorSpace) auto srgbLinearColorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGBLinear_Named); CPU_CONFIG(f16, kRaster_Backend, kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgbLinearColorSpace) } #undef CPU_CONFIG #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK if (config->getTag().equals("hwui")) { Config config = { SkString("hwui"), Benchmark::kHWUI_Backend, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, 0, kBogusContextType, kBogusContextOptions, false }; configs->push_back(config); } #endif } // Append all configs that are enabled and supported. void create_configs(SkTArray* configs) { SkCommandLineConfigArray array; ParseConfigs(FLAGS_config, &array); for (int i = 0; i < array.count(); ++i) { create_config(array[i].get(), configs); } } // disable warning : switch statement contains default but no 'case' labels #if defined _WIN32 #pragma warning ( push ) #pragma warning ( disable : 4065 ) #endif // If bench is enabled for config, returns a Target* for it, otherwise nullptr. static Target* is_enabled(Benchmark* bench, const Config& config) { if (!bench->isSuitableFor(config.backend)) { return nullptr; } SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY, config.color, config.alpha, config.colorSpace); Target* target = nullptr; switch (config.backend) { #if SK_SUPPORT_GPU case Benchmark::kGPU_Backend: target = new GPUTarget(config); break; #endif #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK case Benchmark::kHWUI_Backend: target = new HWUITarget(config, bench); break; #endif default: target = new Target(config); break; } if (!target->init(info, bench)) { delete target; return nullptr; } return target; } #if defined _WIN32 #pragma warning ( pop ) #endif static bool valid_brd_bench(sk_sp encoded, SkColorType colorType, uint32_t sampleSize, uint32_t minOutputSize, int* width, int* height) { std::unique_ptr brd( SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy)); if (nullptr == brd.get()) { // This is indicates that subset decoding is not supported for a particular image format. return false; } if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize > (uint32_t) brd->height()) { // This indicates that the image is not large enough to decode a // minOutputSize x minOutputSize subset at the given sampleSize. return false; } // Set the image width and height. The calling code will use this to choose subsets to decode. *width = brd->width(); *height = brd->height(); return true; } static void cleanup_run(Target* target) { delete target; #if SK_SUPPORT_GPU if (FLAGS_abandonGpuContext) { gGrFactory->abandonContexts(); } if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) { gGrFactory->destroyContexts(); } #endif } static void collect_files(const SkCommandLineFlags::StringArray& paths, const char* ext, SkTArray* list) { for (int i = 0; i < paths.count(); ++i) { if (SkStrEndsWith(paths[i], ext)) { list->push_back(SkString(paths[i])); } else { SkOSFile::Iter it(paths[i], ext); SkString path; while (it.next(&path)) { list->push_back(SkOSPath::Join(paths[i], path.c_str())); } } } } class BenchmarkStream { public: BenchmarkStream() : fBenches(BenchRegistry::Head()) , fGMs(skiagm::GMRegistry::Head()) , fCurrentRecording(0) , fCurrentPiping(0) , fCurrentScale(0) , fCurrentSKP(0) , fCurrentSVG(0) , fCurrentUseMPD(0) , fCurrentCodec(0) , fCurrentAndroidCodec(0) , fCurrentBRDImage(0) , fCurrentColorImage(0) , fCurrentColorType(0) , fCurrentAlphaType(0) , fCurrentSubsetType(0) , fCurrentSampleSize(0) , fCurrentAnimSKP(0) { collect_files(FLAGS_skps, ".skp", &fSKPs); collect_files(FLAGS_svgs, ".svg", &fSVGs); if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d", &fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) { SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]); exit(1); } for (int i = 0; i < FLAGS_scales.count(); i++) { if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) { SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]); exit(1); } } if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) { SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]); exit(1); } if (FLAGS_mpd) { fUseMPDs.push_back() = true; } fUseMPDs.push_back() = false; // Prepare the images for decoding if (!CollectImages(FLAGS_images, &fImages)) { exit(1); } if (!CollectImages(FLAGS_colorImages, &fColorImages)) { exit(1); } // Choose the candidate color types for image decoding fColorTypes.push_back(kN32_SkColorType); if (!FLAGS_simpleCodec) { fColorTypes.push_back(kRGB_565_SkColorType); fColorTypes.push_back(kAlpha_8_SkColorType); fColorTypes.push_back(kIndex_8_SkColorType); fColorTypes.push_back(kGray_8_SkColorType); } } static sk_sp ReadPicture(const char* path) { // Not strictly necessary, as it will be checked again later, // but helps to avoid a lot of pointless work if we're going to skip it. if (SkCommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) { return nullptr; } std::unique_ptr stream = SkStream::MakeFromFile(path); if (!stream) { SkDebugf("Could not read %s.\n", path); return nullptr; } return SkPicture::MakeFromStream(stream.get()); } static sk_sp ReadSVGPicture(const char* path) { SkFILEStream stream(path); if (!stream.isValid()) { SkDebugf("Could not read %s.\n", path); return nullptr; } sk_sp svgDom = SkSVGDOM::MakeFromStream(stream); if (!svgDom) { SkDebugf("Could not parse %s.\n", path); return nullptr; } // Use the intrinsic SVG size if available, otherwise fall back to a default value. static const SkSize kDefaultContainerSize = SkSize::Make(128, 128); if (svgDom->containerSize().isEmpty()) { svgDom->setContainerSize(kDefaultContainerSize); } SkPictureRecorder recorder; svgDom->render(recorder.beginRecording(svgDom->containerSize().width(), svgDom->containerSize().height())); return recorder.finishRecordingAsPicture(); } Benchmark* next() { std::unique_ptr bench; do { bench.reset(this->rawNext()); if (!bench) { return nullptr; } } while(SkCommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) || SkCommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType)); return bench.release(); } Benchmark* rawNext() { if (fBenches) { Benchmark* bench = fBenches->factory()(nullptr); fBenches = fBenches->next(); fSourceType = "bench"; fBenchType = "micro"; return bench; } while (fGMs) { std::unique_ptr gm(fGMs->factory()(nullptr)); fGMs = fGMs->next(); if (gm->runAsBench()) { fSourceType = "gm"; fBenchType = "micro"; return new GMBench(gm.release()); } } // First add all .skps as RecordingBenches. while (fCurrentRecording < fSKPs.count()) { const SkString& path = fSKPs[fCurrentRecording++]; sk_sp pic = ReadPicture(path.c_str()); if (!pic) { continue; } SkString name = SkOSPath::Basename(path.c_str()); fSourceType = "skp"; fBenchType = "recording"; fSKPBytes = static_cast(SkPictureUtils::ApproximateBytesUsed(pic.get())); fSKPOps = pic->approximateOpCount(); return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh, FLAGS_lite); } // Add all .skps as PipeBenches. while (fCurrentPiping < fSKPs.count()) { const SkString& path = fSKPs[fCurrentPiping++]; sk_sp pic = ReadPicture(path.c_str()); if (!pic) { continue; } SkString name = SkOSPath::Basename(path.c_str()); fSourceType = "skp"; fBenchType = "piping"; fSKPBytes = static_cast(SkPictureUtils::ApproximateBytesUsed(pic.get())); fSKPOps = pic->approximateOpCount(); return new PipingBench(name.c_str(), pic.get()); } // Then once each for each scale as SKPBenches (playback). while (fCurrentScale < fScales.count()) { while (fCurrentSKP < fSKPs.count()) { const SkString& path = fSKPs[fCurrentSKP]; sk_sp pic = ReadPicture(path.c_str()); if (!pic) { fCurrentSKP++; continue; } while (fCurrentUseMPD < fUseMPDs.count()) { if (FLAGS_bbh) { // The SKP we read off disk doesn't have a BBH. Re-record so it grows one. SkRTreeFactory factory; SkPictureRecorder recorder; pic->playback(recorder.beginRecording(pic->cullRect().width(), pic->cullRect().height(), &factory, 0)); pic = recorder.finishRecordingAsPicture(); } SkString name = SkOSPath::Basename(path.c_str()); fSourceType = "skp"; fBenchType = "playback"; return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale], fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP); } fCurrentUseMPD = 0; fCurrentSKP++; } while (fCurrentSVG++ < fSVGs.count()) { const char* path = fSVGs[fCurrentSVG - 1].c_str(); if (sk_sp pic = ReadSVGPicture(path)) { fSourceType = "svg"; fBenchType = "playback"; return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip, fScales[fCurrentScale], false, FLAGS_loopSKP); } } fCurrentSKP = 0; fCurrentSVG = 0; fCurrentScale++; } // Now loop over each skp again if we have an animation if (fZoomMax != 1.0f && fZoomPeriodMs > 0) { while (fCurrentAnimSKP < fSKPs.count()) { const SkString& path = fSKPs[fCurrentAnimSKP]; sk_sp pic = ReadPicture(path.c_str()); if (!pic) { fCurrentAnimSKP++; continue; } fCurrentAnimSKP++; SkString name = SkOSPath::Basename(path.c_str()); sk_sp animation( SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs)); return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation.get(), FLAGS_loopSKP); } } for (; fCurrentCodec < fImages.count(); fCurrentCodec++) { fSourceType = "image"; fBenchType = "skcodec"; const SkString& path = fImages[fCurrentCodec]; if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { continue; } sk_sp encoded(SkData::MakeFromFileName(path.c_str())); std::unique_ptr codec(SkCodec::NewFromData(encoded)); if (!codec) { // Nothing to time. SkDebugf("Cannot find codec for %s\n", path.c_str()); continue; } while (fCurrentColorType < fColorTypes.count()) { const SkColorType colorType = fColorTypes[fCurrentColorType]; SkAlphaType alphaType = codec->getInfo().alphaType(); if (FLAGS_simpleCodec) { if (kUnpremul_SkAlphaType == alphaType) { alphaType = kPremul_SkAlphaType; } fCurrentColorType++; } else { switch (alphaType) { case kOpaque_SkAlphaType: // We only need to test one alpha type (opaque). fCurrentColorType++; break; case kUnpremul_SkAlphaType: case kPremul_SkAlphaType: if (0 == fCurrentAlphaType) { // Test unpremul first. alphaType = kUnpremul_SkAlphaType; fCurrentAlphaType++; } else { // Test premul. alphaType = kPremul_SkAlphaType; fCurrentAlphaType = 0; fCurrentColorType++; } break; default: SkASSERT(false); fCurrentColorType++; break; } } // Make sure we can decode to this color type and alpha type. SkImageInfo info = codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType); const size_t rowBytes = info.minRowBytes(); SkAutoMalloc storage(info.getSafeSize(rowBytes)); // Used if fCurrentColorType is kIndex_8_SkColorType int colorCount = 256; SkPMColor colors[256]; const SkCodec::Result result = codec->getPixels( info, storage.get(), rowBytes, nullptr, colors, &colorCount); switch (result) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: return new CodecBench(SkOSPath::Basename(path.c_str()), encoded.get(), colorType, alphaType); case SkCodec::kInvalidConversion: // This is okay. Not all conversions are valid. break; default: // This represents some sort of failure. SkASSERT(false); break; } } fCurrentColorType = 0; } // Run AndroidCodecBenches const int sampleSizes[] = { 2, 4, 8 }; for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) { fSourceType = "image"; fBenchType = "skandroidcodec"; const SkString& path = fImages[fCurrentAndroidCodec]; if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { continue; } sk_sp encoded(SkData::MakeFromFileName(path.c_str())); std::unique_ptr codec(SkAndroidCodec::NewFromData(encoded)); if (!codec) { // Nothing to time. SkDebugf("Cannot find codec for %s\n", path.c_str()); continue; } while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) { int sampleSize = sampleSizes[fCurrentSampleSize]; fCurrentSampleSize++; if (10 * sampleSize > SkTMin(codec->getInfo().width(), codec->getInfo().height())) { // Avoid benchmarking scaled decodes of already small images. break; } return new AndroidCodecBench(SkOSPath::Basename(path.c_str()), encoded.get(), sampleSize); } fCurrentSampleSize = 0; } // Run the BRDBenches // We intend to create benchmarks that model the use cases in // android/libraries/social/tiledimage. In this library, an image is decoded in 512x512 // tiles. The image can be translated freely, so the location of a tile may be anywhere in // the image. For that reason, we will benchmark decodes in five representative locations // in the image. Additionally, this use case utilizes power of two scaling, so we will // test on power of two sample sizes. The output tile is always 512x512, so, when a // sampleSize is used, the size of the subset that is decoded is always // (sampleSize*512)x(sampleSize*512). // There are a few good reasons to only test on power of two sample sizes at this time: // All use cases we are aware of only scale by powers of two. // PNG decodes use the indicated sampling strategy regardless of the sample size, so // these tests are sufficient to provide good coverage of our scaling options. const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 }; const uint32_t minOutputSize = 512; for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) { fSourceType = "image"; fBenchType = "BRD"; const SkString& path = fImages[fCurrentBRDImage]; if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { continue; } while (fCurrentColorType < fColorTypes.count()) { while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) { while (fCurrentSubsetType <= kLastSingle_SubsetType) { sk_sp encoded(SkData::MakeFromFileName(path.c_str())); const SkColorType colorType = fColorTypes[fCurrentColorType]; uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize]; int currentSubsetType = fCurrentSubsetType++; int width = 0; int height = 0; if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize, &width, &height)) { break; } SkString basename = SkOSPath::Basename(path.c_str()); SkIRect subset; const uint32_t subsetSize = sampleSize * minOutputSize; switch (currentSubsetType) { case kTopLeft_SubsetType: basename.append("_TopLeft"); subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize); break; case kTopRight_SubsetType: basename.append("_TopRight"); subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize, subsetSize); break; case kMiddle_SubsetType: basename.append("_Middle"); subset = SkIRect::MakeXYWH((width - subsetSize) / 2, (height - subsetSize) / 2, subsetSize, subsetSize); break; case kBottomLeft_SubsetType: basename.append("_BottomLeft"); subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize, subsetSize); break; case kBottomRight_SubsetType: basename.append("_BottomRight"); subset = SkIRect::MakeXYWH(width - subsetSize, height - subsetSize, subsetSize, subsetSize); break; default: SkASSERT(false); } return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(), colorType, sampleSize, subset); } fCurrentSubsetType = 0; fCurrentSampleSize++; } fCurrentSampleSize = 0; fCurrentColorType++; } fCurrentColorType = 0; } while (fCurrentColorImage < fColorImages.count()) { fSourceType = "colorimage"; fBenchType = "skcolorcodec"; const SkString& path = fColorImages[fCurrentColorImage]; fCurrentColorImage++; sk_sp encoded = SkData::MakeFromFileName(path.c_str()); if (encoded) { return new ColorCodecBench(SkOSPath::Basename(path.c_str()).c_str(), std::move(encoded)); } else { SkDebugf("Could not read file %s.\n", path.c_str()); } } return nullptr; } void fillCurrentOptions(ResultsWriter* log) const { log->configOption("source_type", fSourceType); log->configOption("bench_type", fBenchType); if (0 == strcmp(fSourceType, "skp")) { log->configOption("clip", SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop, fClip.fRight, fClip.fBottom).c_str()); SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str()); if (fCurrentUseMPD > 0) { SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD); log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false"); } } if (0 == strcmp(fBenchType, "recording")) { log->metric("bytes", fSKPBytes); log->metric("ops", fSKPOps); } } private: enum SubsetType { kTopLeft_SubsetType = 0, kTopRight_SubsetType = 1, kMiddle_SubsetType = 2, kBottomLeft_SubsetType = 3, kBottomRight_SubsetType = 4, kTranslate_SubsetType = 5, kZoom_SubsetType = 6, kLast_SubsetType = kZoom_SubsetType, kLastSingle_SubsetType = kBottomRight_SubsetType, }; const BenchRegistry* fBenches; const skiagm::GMRegistry* fGMs; SkIRect fClip; SkTArray fScales; SkTArray fSKPs; SkTArray fSVGs; SkTArray fUseMPDs; SkTArray fImages; SkTArray fColorImages; SkTArray fColorTypes; SkScalar fZoomMax; double fZoomPeriodMs; double fSKPBytes, fSKPOps; const char* fSourceType; // What we're benching: bench, GM, SKP, ... const char* fBenchType; // How we bench it: micro, recording, playback, ... int fCurrentRecording; int fCurrentPiping; int fCurrentScale; int fCurrentSKP; int fCurrentSVG; int fCurrentUseMPD; int fCurrentCodec; int fCurrentAndroidCodec; int fCurrentBRDImage; int fCurrentColorImage; int fCurrentColorType; int fCurrentAlphaType; int fCurrentSubsetType; int fCurrentSampleSize; int fCurrentAnimSKP; }; // Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung. // This prints something every once in a while so that it knows we're still working. static void start_keepalive() { struct Loop { static void forever(void*) { for (;;) { static const int kSec = 1200; #if defined(SK_BUILD_FOR_WIN) Sleep(kSec * 1000); #else sleep(kSec); #endif SkDebugf("\nBenchmarks still running...\n"); } } }; static SkThread* intentionallyLeaked = new SkThread(Loop::forever); intentionallyLeaked->start(); } int nanobench_main(); int nanobench_main() { SetupCrashHandler(); SkAutoGraphics ag; SkTaskGroup::Enabler enabled(FLAGS_threads); #if SK_SUPPORT_GPU GrContextOptions grContextOpts; gGrFactory.reset(new GrContextFactory(grContextOpts)); #endif if (FLAGS_veryVerbose) { FLAGS_verbose = true; } if (kAutoTuneLoops != FLAGS_loops) { FLAGS_samples = 1; FLAGS_gpuFrameLag = 0; } if (!FLAGS_writePath.isEmpty()) { SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]); if (!sk_mkdir(FLAGS_writePath[0])) { SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]); FLAGS_writePath.set(0, nullptr); } } std::unique_ptr log(new ResultsWriter); if (!FLAGS_outResultsFile.isEmpty()) { #if defined(SK_RELEASE) log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0])); #else SkDebugf("I'm ignoring --outResultsFile because this is a Debug build."); return 1; #endif } if (1 == FLAGS_properties.count() % 2) { SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n"); return 1; } for (int i = 1; i < FLAGS_properties.count(); i += 2) { log->property(FLAGS_properties[i-1], FLAGS_properties[i]); } if (1 == FLAGS_key.count() % 2) { SkDebugf("ERROR: --key must be passed with an even number of arguments.\n"); return 1; } for (int i = 1; i < FLAGS_key.count(); i += 2) { log->key(FLAGS_key[i-1], FLAGS_key[i]); } const double overhead = estimate_timer_overhead(); SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead)); SkTArray samples; if (kAutoTuneLoops != FLAGS_loops) { SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n"); } else if (FLAGS_quiet) { SkDebugf("! -> high variance, ? -> moderate variance\n"); SkDebugf(" micros \tbench\n"); } else if (FLAGS_ms) { SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n"); } else { SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n", FLAGS_samples, "samples"); } SkTArray configs; create_configs(&configs); #ifdef THERMAL_MANAGER_SUPPORTED int tmEnabled, tmThreshold, tmSleepTimeMs, tmTimeoutMs; if (4 != sscanf(FLAGS_useThermalManager[0], "%d,%d,%d,%d", &tmEnabled, &tmThreshold, &tmSleepTimeMs, &tmTimeoutMs)) { SkDebugf("Can't parse %s from --useThermalManager.\n", FLAGS_useThermalManager[0]); exit(1); } ThermalManager tm(tmThreshold, tmSleepTimeMs, tmTimeoutMs); #endif if (FLAGS_keepAlive) { start_keepalive(); } gSkUseAnalyticAA = FLAGS_analyticAA; if (FLAGS_forceAnalyticAA) { gSkForceAnalyticAA = true; } int runs = 0; BenchmarkStream benchStream; while (Benchmark* b = benchStream.next()) { std::unique_ptr bench(b); if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) { continue; } if (!configs.empty()) { log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY); bench->delayedSetup(); } for (int i = 0; i < configs.count(); ++i) { #ifdef THERMAL_MANAGER_SUPPORTED if (tmEnabled && !tm.coolOffIfNecessary()) { SkDebugf("Could not cool off, timings will be throttled\n"); } #endif Target* target = is_enabled(b, configs[i]); if (!target) { continue; } // During HWUI output this canvas may be nullptr. SkCanvas* canvas = target->getCanvas(); const char* config = target->config.name.c_str(); if (FLAGS_pre_log || FLAGS_dryRun) { SkDebugf("Running %s\t%s\n" , bench->getUniqueName() , config); if (FLAGS_dryRun) { continue; } } target->setup(); bench->perCanvasPreDraw(canvas); int maxFrameLag; int loops = target->needsFrameTiming(&maxFrameLag) ? setup_gpu_bench(target, bench.get(), maxFrameLag) : setup_cpu_bench(overhead, target, bench.get()); if (FLAGS_ms) { samples.reset(); auto stop = now_ms() + FLAGS_ms; do { samples.push_back(time(loops, bench.get(), target) / loops); } while (now_ms() < stop); } else { samples.reset(FLAGS_samples); for (int s = 0; s < FLAGS_samples; s++) { samples[s] = time(loops, bench.get(), target) / loops; } } #if SK_SUPPORT_GPU SkTArray keys; SkTArray values; bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend; if (gpuStatsDump) { // TODO cache stats bench->getGpuStats(canvas, &keys, &values); } #endif bench->perCanvasPostDraw(canvas); if (Benchmark::kNonRendering_Backend != target->config.backend && !FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) { SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config); pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName()); pngFilename.append(".png"); write_canvas_png(target, pngFilename); } if (kFailedLoops == loops) { // Can't be timed. A warning note has already been printed. cleanup_run(target); continue; } Stats stats(samples); log->config(config); log->configOption("name", bench->getName()); benchStream.fillCurrentOptions(log.get()); target->fillOptions(log.get()); log->metric("min_ms", stats.min); log->metrics("samples", samples); #if SK_SUPPORT_GPU if (gpuStatsDump) { // dump to json, only SKPBench currently returns valid keys / values SkASSERT(keys.count() == values.count()); for (int i = 0; i < keys.count(); i++) { log->metric(keys[i].c_str(), values[i]); } } #endif if (runs++ % FLAGS_flushEvery == 0) { log->flush(); } if (kAutoTuneLoops != FLAGS_loops) { if (configs.count() == 1) { config = ""; // Only print the config if we run the same bench on more than one. } SkDebugf("%4d/%-4dMB\t%s\t%s\n" , sk_tools::getCurrResidentSetSizeMB() , sk_tools::getMaxResidentSetSizeMB() , bench->getUniqueName() , config); } else if (FLAGS_quiet) { const char* mark = " "; const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; if (stddev_percent > 5) mark = "?"; if (stddev_percent > 10) mark = "!"; SkDebugf("%10.2f %s\t%s\t%s\n", stats.median*1e3, mark, bench->getUniqueName(), config); } else { const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n" , sk_tools::getCurrResidentSetSizeMB() , sk_tools::getMaxResidentSetSizeMB() , loops , HUMANIZE(stats.min) , HUMANIZE(stats.median) , HUMANIZE(stats.mean) , HUMANIZE(stats.max) , stddev_percent , FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str() , config , bench->getUniqueName() ); } #if SK_SUPPORT_GPU if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) { GrContext* context = gGrFactory->get(configs[i].ctxType, configs[i].ctxOptions); context->printCacheStats(); context->printGpuStats(); } #endif if (FLAGS_verbose) { SkDebugf("Samples: "); for (int i = 0; i < samples.count(); i++) { SkDebugf("%s ", HUMANIZE(samples[i])); } SkDebugf("%s\n", bench->getUniqueName()); } cleanup_run(target); } } log->bench("memory_usage", 0,0); log->config("meta"); log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB()); #if SK_SUPPORT_GPU // Make sure we clean up the global GrContextFactory here, otherwise we might race with the // SkEventTracer destructor gGrFactory.reset(nullptr); #endif return 0; } #if !defined SK_BUILD_FOR_IOS int main(int argc, char** argv) { SkCommandLineFlags::Parse(argc, argv); return nanobench_main(); } #endif