#include "SkPdfNativeTokenizer.h" #include "SkPdfObject.h" #include "SkPdfConfig.h" #include "SkPdfStreamCommonDictionary_autogen.h" static unsigned char* skipPdfWhiteSpaces(unsigned char* start, unsigned char* end) { while (start < end && isPdfWhiteSpace(*start)) { if (*start == kComment_PdfDelimiter) { // skip the comment until end of line while (start < end && !isPdfEOL(*start)) { *start = '\0'; start++; } } else { *start = '\0'; start++; } } return start; } // TODO(edisonn) '(' can be used, will it break the string a delimiter or space inside () ? static unsigned char* endOfPdfToken(unsigned char* start, unsigned char* end) { //int opened brackets //TODO(edisonn): what out for special chars, like \n, \032 SkASSERT(!isPdfWhiteSpace(*start)); if (start < end && isPdfDelimiter(*start)) { start++; return start; } while (start < end && !isPdfWhiteSpaceOrPdfDelimiter(*start)) { start++; } return start; } // last elem has to be ] static unsigned char* readArray(unsigned char* start, unsigned char* end, SkPdfObject* array, SkPdfAllocator* allocator) { while (start < end) { // skip white spaces start = skipPdfWhiteSpaces(start, end); unsigned char* endOfToken = endOfPdfToken(start, end); if (endOfToken == start) { // TODO(edisonn): report error in pdf file (end of stream with ] for end of aray return start; } if (endOfToken == start + 1 && *start == kClosedSquareBracket_PdfDelimiter) { return endOfToken; } SkPdfObject* newObj = allocator->allocObject(); start = nextObject(start, end, newObj, allocator); // TODO(edisonn): perf/memory: put the variables on the stack, and flush them on the array only when // we are sure they are not references! if (newObj->isKeywordReference() && array->size() >= 2 && array->objAtAIndex(array->size() - 1)->isInteger() && array->objAtAIndex(array->size() - 2)->isInteger()) { SkPdfObject* gen = array->removeLastInArray(); SkPdfObject* id = array->removeLastInArray(); newObj->reset(); SkPdfObject::makeReference((unsigned int)id->intValue(), (unsigned int)gen->intValue(), newObj); } array->appendInArray(newObj); } // TODO(edisonn): report not reached, we should never get here SkASSERT(false); return start; } // When we read strings we will rewrite the string so we will reuse the memory // when we start to read the string, we already consumed the opened bracket static unsigned char* readString(unsigned char* start, unsigned char* end, SkPdfObject* str) { unsigned char* out = start; unsigned char* in = start; int openRoundBrackets = 0; while (in < end && (*in != kClosedRoundBracket_PdfDelimiter || openRoundBrackets > 0)) { openRoundBrackets += ((*in) == kOpenedRoundBracket_PdfDelimiter); openRoundBrackets -= ((*in) == kClosedRoundBracket_PdfDelimiter); if (*in == kEscape_PdfSpecial) { if (in + 1 < end) { switch (in[1]) { case 'n': *out = kLF_PdfWhiteSpace; out++; in += 2; break; case 'r': *out = kCR_PdfWhiteSpace; out++; in += 2; break; case 't': *out = kHT_PdfWhiteSpace; out++; in += 2; break; case 'b': // TODO(edisonn): any special meaning to backspace? *out = kBackspace_PdfSpecial; out++; in += 2; break; case 'f': *out = kFF_PdfWhiteSpace; out++; in += 2; break; case kOpenedRoundBracket_PdfDelimiter: *out = kOpenedRoundBracket_PdfDelimiter; out++; in += 2; break; case kClosedRoundBracket_PdfDelimiter: *out = kClosedRoundBracket_PdfDelimiter; out++; in += 2; break; case kEscape_PdfSpecial: *out = kEscape_PdfSpecial; out++; in += 2; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { //read octals in++; // consume backslash int code = 0; int i = 0; while (in < end && *in >= '0' && *in < '8') { code = (code << 3) + ((*in) - '0'); // code * 8 + d i++; in++; if (i == 3) { *out = code & 0xff; out++; i = 0; } } if (i > 0) { *out = code & 0xff; out++; } } break; default: // Per spec, backslash is ignored is escaped ch is unknown in++; break; } } } else { // TODO(edisonn): perf, avoid copy into itself, maybe first do a simple scan until found backslash ? // we could have one look that first just inc current, and when we find the backslash // we go to this loop *in = *out; in++; out++; } } SkPdfObject::makeString(start, out, str); return in + 1; // consume ) at the end of the string } static unsigned char* readHexString(unsigned char* start, unsigned char* end, SkPdfObject* str) { unsigned char* out = start; unsigned char* in = start; unsigned char code = 0; while (in < end) { while (in < end && isPdfWhiteSpace(*in)) { in++; } if (*in == kClosedInequityBracket_PdfDelimiter) { *in = '\0'; in++; // normal exit break; } if (in >= end) { // end too soon break; } switch (*in) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': code = (*in - '0') << 4; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': code = (*in - 'a' + 10) << 4; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': code = (*in - 'A' + 10) << 4; break; // TODO(edisonn): spec does not say how to handle this error default: break; } in++; // advance while (in < end && isPdfWhiteSpace(*in)) { in++; } // TODO(edisonn): report error if (in >= end) { *out = code; out++; break; } if (*in == kClosedInequityBracket_PdfDelimiter) { *out = code; out++; break; } switch (*in) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': code += (*in - '0'); break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': code += (*in - 'a' + 10); break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': code += (*in - 'A' + 10); break; // TODO(edisonn): spec does not say how to handle this error default: break; } *out = code; out++; in++; } if (out < in) { *out = '\0'; } SkPdfObject::makeHexString(start, out, str); return in; // consume > at the end of the string } // TODO(edisonn): before PDF 1.2 name could not have special characters, add version parameter static unsigned char* readName(unsigned char* start, unsigned char* end, SkPdfObject* name) { unsigned char* out = start; unsigned char* in = start; unsigned char code = 0; while (in < end) { if (isPdfWhiteSpaceOrPdfDelimiter(*in)) { break; } if (*in == '#' && in + 2 < end) { in++; switch (*in) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': code = (*in - '0') << 4; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': code = (*in - 'a' + 10) << 4; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': code = (*in - 'A' + 10) << 4; break; // TODO(edisonn): spec does not say how to handle this error default: break; } in++; // advance switch (*in) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': code += (*in - '0'); break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': code += (*in - 'a' + 10); break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': code += (*in - 'A' + 10); break; // TODO(edisonn): spec does not say how to handle this error default: break; } *out = code; out++; in++; } else { *out = *in; out++; in++; } } SkPdfObject::makeName(start, out, name); return in; } // TODO(edisonn): pdf spec let Length to be an indirect object define after the stream // that makes for an interesting scenario, where the stream itself contains endstream, together // with a reference object with the length, but the real length object would be somewhere else // it could confuse the parser /*example: 7 0 obj << /length 8 0 R>> stream ............... endstream 8 0 obj #we are in stream actually, not a real object << 10 >> #we are in stream actually, not a real object endobj endstream 8 0 obj #real obj << 100 >> #real obj endobj and it could get worse, with multiple object like this */ // right now implement the silly algorithm that assumes endstream is finishing the stream static unsigned char* readStream(unsigned char* start, unsigned char* end, SkPdfObject* dict) { start = skipPdfWhiteSpaces(start, end); if (!(start[0] == 's' && start[1] == 't' && start[2] == 'r' && start[3] == 'e' && start[4] == 'a' && start[5] == 'm')) { // no stream. return. return start; } start += 6; // strlen("stream") if (start[0] == kCR_PdfWhiteSpace && start[1] == kLF_PdfWhiteSpace) { start += 2; } else if (start[0] == kLF_PdfWhiteSpace) { start += 1; } SkPdfStreamCommonDictionary* stream = (SkPdfStreamCommonDictionary*) dict; // TODO(edisonn): load Length int64_t length = -1; // TODO(edisonn): very basic implementation if (stream->has_Length() && stream->Length(NULL) > 0) { length = stream->Length(NULL); } // TODO(edisonn): laod external streams // TODO(edisonn): look at the last filter, to determione how to deal with possible issue if (length < 0) { // scan the buffer, until we find first endstream // TODO(edisonn): all buffers must have a 0 at the end now, // TODO(edisonn): hack (mark end of content with 0) unsigned char lastCh = *end; *end = '\0'; //SkASSERT(*end == '\0'); unsigned char* endstream = (unsigned char*)strstr((const char*)start, "endstream"); *end = lastCh; if (endstream) { length = endstream - start; if (*(endstream-1) == kLF_PdfWhiteSpace) length--; if (*(endstream-1) == kCR_PdfWhiteSpace) length--; } } if (length >= 0) { unsigned char* endstream = start + length; if (endstream[0] == kCR_PdfWhiteSpace && endstream[1] == kLF_PdfWhiteSpace) { endstream += 2; } else if (endstream[0] == kLF_PdfWhiteSpace) { endstream += 1; } // TODO(edisonn): verify the next bytes are "endstream" endstream += strlen("endstream"); // TODO(edisonn): Assert? report error/warning? dict->addStream(start, (size_t)length); return endstream; } return start; } static unsigned char* readDictionary(unsigned char* start, unsigned char* end, SkPdfObject* dict, SkPdfAllocator* allocator) { SkPdfObject::makeEmptyDictionary(dict); start = skipPdfWhiteSpaces(start, end); while (start < end && *start == kNamed_PdfDelimiter) { SkPdfObject key; *start = '\0'; start++; start = readName(start, end, &key); start = skipPdfWhiteSpaces(start, end); if (start < end) { SkPdfObject* value = allocator->allocObject(); start = nextObject(start, end, value, allocator); start = skipPdfWhiteSpaces(start, end); if (start < end) { // seems we have an indirect reference if (isPdfDigit(*start)) { SkPdfObject generation; start = nextObject(start, end, &generation, allocator); SkPdfObject keywordR; start = nextObject(start, end, &keywordR, allocator); if (value->isInteger() && generation.isInteger() && keywordR.isKeywordReference()) { int64_t id = value->intValue(); value->reset(); SkPdfObject::makeReference((unsigned int)id, (unsigned int)generation.intValue(), value); dict->set(&key, value); } else { // error, ignore dict->set(&key, value); } } else { // next elem is not a digit, but it might not be / either! dict->set(&key, value); } } else { // /key >> dict->set(&key, value); return end; } start = skipPdfWhiteSpaces(start, end); } else { dict->set(&key, &SkPdfObject::kNull); return end; } } // TODO(edisonn): options to ignore these errors // now we should expect >> start = skipPdfWhiteSpaces(start, end); start = endOfPdfToken(start, end); // > start = endOfPdfToken(start, end); // > // TODO(edisonn): read stream ... put dict and stream in a struct, and have a pointer to struct ... // or alocate 2 objects, and if there is no stream, free it to be used by someone else? or just leave it ? start = readStream(start, end, dict); return start; } unsigned char* nextObject(unsigned char* start, unsigned char* end, SkPdfObject* token, SkPdfAllocator* allocator) { unsigned char* current; // skip white spaces start = skipPdfWhiteSpaces(start, end); current = endOfPdfToken(start, end); // no token, len would be 0 if (current == start) { return NULL; } int tokenLen = current - start; if (tokenLen == 1) { // start array switch (*start) { case kOpenedSquareBracket_PdfDelimiter: *start = '\0'; SkPdfObject::makeEmptyArray(token); return readArray(current, end, token, allocator); case kOpenedRoundBracket_PdfDelimiter: *start = '\0'; return readString(start, end, token); case kOpenedInequityBracket_PdfDelimiter: *start = '\0'; if (end > start + 1 && start[1] == kOpenedInequityBracket_PdfDelimiter) { // TODO(edisonn): pass here the length somehow? return readDictionary(start + 2, end, token, allocator); // skip << } else { return readHexString(start + 1, end, token); // skip < } case kNamed_PdfDelimiter: *start = '\0'; return readName(start + 1, end, token); // TODO(edisonn): what to do curly brackets? read spec! case kOpenedCurlyBracket_PdfDelimiter: default: break; } SkASSERT(!isPdfWhiteSpace(*start)); if (isPdfDelimiter(*start)) { // TODO(edisonn): how stream ] } > ) will be handled? // for now ignore, and it will become a keyword to be ignored } } if (tokenLen == 4 && start[0] == 'n' && start[1] == 'u' && start[2] == 'l' && start[3] == 'l') { SkPdfObject::makeNull(token); return current; } if (tokenLen == 4 && start[0] == 't' && start[1] == 'r' && start[2] == 'u' && start[3] == 'e') { SkPdfObject::makeBoolean(true, token); return current; } if (tokenLen == 5 && start[0] == 'f' && start[1] == 'a' && start[2] == 'l' && start[3] == 's' && start[3] == 'e') { SkPdfObject::makeBoolean(false, token); return current; } if (isPdfNumeric(*start)) { SkPdfObject::makeNumeric(start, current, token); } else { SkPdfObject::makeKeyword(start, current, token); } return current; } SkPdfObject* SkPdfAllocator::allocBlock() { return new SkPdfObject[BUFFER_SIZE]; } SkPdfAllocator::~SkPdfAllocator() { for (int i = 0 ; i < fHandles.count(); i++) { free(fHandles[i]); } for (int i = 0 ; i < fHistory.count(); i++) { for (int j = 0 ; j < BUFFER_SIZE; j++) { fHistory[i][j].reset(); } delete[] fHistory[i]; } for (int j = 0 ; j < BUFFER_SIZE; j++) { fCurrent[j].reset(); } delete[] fCurrent; } SkPdfObject* SkPdfAllocator::allocObject() { if (fCurrentUsed >= BUFFER_SIZE) { fHistory.push(fCurrent); fCurrent = allocBlock(); fCurrentUsed = 0; } fCurrentUsed++; return &fCurrent[fCurrentUsed - 1]; } // TODO(edisonn): perf: do no copy the buffers, but use them, and mark cache the result, so there is no need of a second pass SkPdfNativeTokenizer::SkPdfNativeTokenizer(SkPdfObject* objWithStream, const SkPdfMapper* mapper, SkPdfAllocator* allocator) : fMapper(mapper), fAllocator(allocator), fUncompressedStream(NULL), fUncompressedStreamEnd(NULL), fEmpty(false), fHasPutBack(false) { unsigned char* buffer = NULL; size_t len = 0; objWithStream->GetFilteredStreamRef(&buffer, &len, fAllocator); // TODO(edisonn): hack, find end of object char* endobj = strstr((char*)buffer, "endobj"); if (endobj) { len = endobj - (char*)buffer + strlen("endobj"); } fUncompressedStreamStart = fUncompressedStream = (unsigned char*)fAllocator->alloc(len); fUncompressedStreamEnd = fUncompressedStream + len; memcpy(fUncompressedStream, buffer, len); } SkPdfNativeTokenizer::SkPdfNativeTokenizer(unsigned char* buffer, int len, const SkPdfMapper* mapper, SkPdfAllocator* allocator) : fMapper(mapper), fAllocator(allocator), fEmpty(false), fHasPutBack(false) { // TODO(edisonn): hack, find end of object char* endobj = strstr((char*)buffer, "endobj"); if (endobj) { len = endobj - (char*)buffer + strlen("endobj"); } fUncompressedStreamStart = fUncompressedStream = (unsigned char*)fAllocator->alloc(len); fUncompressedStreamEnd = fUncompressedStream + len; memcpy(fUncompressedStream, buffer, len); } SkPdfNativeTokenizer::~SkPdfNativeTokenizer() { } bool SkPdfNativeTokenizer::readTokenCore(PdfToken* token) { token->fKeyword = NULL; token->fObject = NULL; fUncompressedStream = skipPdfWhiteSpaces(fUncompressedStream, fUncompressedStreamEnd); if (fUncompressedStream >= fUncompressedStreamEnd) { return false; } SkPdfObject obj; fUncompressedStream = nextObject(fUncompressedStream, fUncompressedStreamEnd, &obj, fAllocator); // If it is a keyword, we will only get the pointer of the string if (obj.type() == SkPdfObject::kKeyword_PdfObjectType) { token->fKeyword = obj.c_str(); token->fKeywordLength = obj.len(); token->fType = kKeyword_TokenType; } else { SkPdfObject* pobj = fAllocator->allocObject(); *pobj = obj; token->fObject = pobj; token->fType = kObject_TokenType; } #ifdef PDF_TRACE static int read_op = 0; read_op++; if (548 == read_op) { printf("break;\n"); } printf("%i READ %s %s\n", read_op, token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str()); #endif return true; } void SkPdfNativeTokenizer::PutBack(PdfToken token) { SkASSERT(!fHasPutBack); fHasPutBack = true; fPutBack = token; #ifdef PDF_TRACE printf("PUT_BACK %s %s\n", token.fType == kKeyword_TokenType ? "Keyword" : "Object", token.fKeyword ? std::string(token.fKeyword, token.fKeywordLength).c_str(): token.fObject->toString().c_str()); #endif } bool SkPdfNativeTokenizer::readToken(PdfToken* token) { if (fHasPutBack) { *token = fPutBack; fHasPutBack = false; #ifdef PDF_TRACE printf("READ_BACK %s %s\n", token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str()); #endif return true; } if (fEmpty) { #ifdef PDF_TRACE printf("EMPTY TOKENIZER\n"); #endif return false; } return readTokenCore(token); }