/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRefCnt_DEFINED #define SkRefCnt_DEFINED #include "SkAtomics.h" #include "SkInstCnt.h" #include "SkTemplates.h" /** \class SkRefCntBase SkRefCntBase is the base class for objects that may be shared by multiple objects. When an existing owner wants to share a reference, it calls ref(). When an owner wants to release its reference, it calls unref(). When the shared object's reference count goes to zero as the result of an unref() call, its (virtual) destructor is called. It is an error for the destructor to be called explicitly (or via the object going out of scope on the stack or calling delete) if getRefCnt() > 1. */ class SK_API SkRefCntBase : SkNoncopyable { public: SK_DECLARE_INST_COUNT(SkRefCntBase) /** Default construct, initializing the reference count to 1. */ SkRefCntBase() : fRefCnt(1) {} /** Destruct, asserting that the reference count is 1. */ virtual ~SkRefCntBase() { #ifdef SK_DEBUG SkASSERTF(fRefCnt == 1, "fRefCnt was %d", fRefCnt); fRefCnt = 0; // illegal value, to catch us if we reuse after delete #endif } #ifdef SK_DEBUG /** Return the reference count. Use only for debugging. */ int32_t getRefCnt() const { return fRefCnt; } #endif /** May return true if the caller is the only owner. * Ensures that all previous owner's actions are complete. */ bool unique() const { if (1 == sk_atomic_load(&fRefCnt, sk_memory_order_acquire)) { // The acquire barrier is only really needed if we return true. It // prevents code conditioned on the result of unique() from running // until previous owners are all totally done calling unref(). return true; } return false; } /** Increment the reference count. Must be balanced by a call to unref(). */ void ref() const { SkASSERT(fRefCnt > 0); (void)sk_atomic_fetch_add(&fRefCnt, +1, sk_memory_order_relaxed); // No barrier required. } /** Decrement the reference count. If the reference count is 1 before the decrement, then delete the object. Note that if this is the case, then the object needs to have been allocated via new, and not on the stack. */ void unref() const { SkASSERT(fRefCnt > 0); // A release here acts in place of all releases we "should" have been doing in ref(). if (1 == sk_atomic_fetch_add(&fRefCnt, -1, sk_memory_order_acq_rel)) { // Like unique(), the acquire is only needed on success, to make sure // code in internal_dispose() doesn't happen before the decrement. this->internal_dispose(); } } #ifdef SK_DEBUG void validate() const { SkASSERT(fRefCnt > 0); } #endif protected: /** * Allow subclasses to call this if they've overridden internal_dispose * so they can reset fRefCnt before the destructor is called. Should only * be called right before calling through to inherited internal_dispose() * or before calling the destructor. */ void internal_dispose_restore_refcnt_to_1() const { #ifdef SK_DEBUG SkASSERT(0 == fRefCnt); fRefCnt = 1; #endif } private: /** * Called when the ref count goes to 0. */ virtual void internal_dispose() const { this->internal_dispose_restore_refcnt_to_1(); SkDELETE(this); } // The following friends are those which override internal_dispose() // and conditionally call SkRefCnt::internal_dispose(). friend class SkWeakRefCnt; mutable int32_t fRefCnt; typedef SkNoncopyable INHERITED; }; #ifdef SK_REF_CNT_MIXIN_INCLUDE // It is the responsibility of the following include to define the type SkRefCnt. // This SkRefCnt should normally derive from SkRefCntBase. #include SK_REF_CNT_MIXIN_INCLUDE #else class SK_API SkRefCnt : public SkRefCntBase { }; #endif /////////////////////////////////////////////////////////////////////////////// /** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for null in on each side of the assignment, and ensuring that ref() is called before unref(), in case the two pointers point to the same object. */ #define SkRefCnt_SafeAssign(dst, src) \ do { \ if (src) src->ref(); \ if (dst) dst->unref(); \ dst = src; \ } while (0) /** Call obj->ref() and return obj. The obj must not be NULL. */ template static inline T* SkRef(T* obj) { SkASSERT(obj); obj->ref(); return obj; } /** Check if the argument is non-null, and if so, call obj->ref() and return obj. */ template static inline T* SkSafeRef(T* obj) { if (obj) { obj->ref(); } return obj; } /** Check if the argument is non-null, and if so, call obj->unref() */ template static inline void SkSafeUnref(T* obj) { if (obj) { obj->unref(); } } template static inline void SkSafeSetNull(T*& obj) { if (obj) { obj->unref(); obj = NULL; } } /////////////////////////////////////////////////////////////////////////////// /** * Utility class that simply unref's its argument in the destructor. */ template class SkAutoTUnref : SkNoncopyable { public: explicit SkAutoTUnref(T* obj = NULL) : fObj(obj) {} ~SkAutoTUnref() { SkSafeUnref(fObj); } T* get() const { return fObj; } T* reset(T* obj) { SkSafeUnref(fObj); fObj = obj; return obj; } void swap(SkAutoTUnref* other) { T* tmp = fObj; fObj = other->fObj; other->fObj = tmp; } /** * Return the hosted object (which may be null), transferring ownership. * The reference count is not modified, and the internal ptr is set to NULL * so unref() will not be called in our destructor. A subsequent call to * detach() will do nothing and return null. */ T* detach() { T* obj = fObj; fObj = NULL; return obj; } /** * BlockRef is a type which inherits from B, cannot be created, * cannot be deleted, and makes ref and unref private. */ template class BlockRef : public B { private: BlockRef(); ~BlockRef(); void ref() const; void unref() const; }; /** If T is const, the type returned from operator-> will also be const. */ typedef typename SkTConstType, SkTIsConst::value>::type BlockRefType; /** * SkAutoTUnref assumes ownership of the ref. As a result, it is an error * for the user to ref or unref through SkAutoTUnref. Therefore * SkAutoTUnref::operator-> returns BlockRef*. This prevents use of * skAutoTUnrefInstance->ref() and skAutoTUnrefInstance->unref(). */ BlockRefType *operator->() const { return static_cast(fObj); } operator T*() const { return fObj; } private: T* fObj; }; // Can't use the #define trick below to guard a bare SkAutoTUnref(...) because it's templated. :( class SkAutoUnref : public SkAutoTUnref { public: SkAutoUnref(SkRefCnt* obj) : SkAutoTUnref(obj) {} }; #define SkAutoUnref(...) SK_REQUIRE_LOCAL_VAR(SkAutoUnref) // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16. // There's only benefit to using this if the deriving class does not otherwise need a vtable. template class SkNVRefCnt : SkNoncopyable { public: SkNVRefCnt() : fRefCnt(1) {} ~SkNVRefCnt() { SkASSERTF(1 == fRefCnt, "NVRefCnt was %d", fRefCnt); } // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same: // - unique() needs acquire when it returns true, and no barrier if it returns false; // - ref() doesn't need any barrier; // - unref() needs a release barrier, and an acquire if it's going to call delete. bool unique() const { return 1 == sk_atomic_load(&fRefCnt, sk_memory_order_acquire); } void ref() const { (void)sk_atomic_fetch_add(&fRefCnt, +1, sk_memory_order_relaxed); } void unref() const { if (1 == sk_atomic_fetch_add(&fRefCnt, -1, sk_memory_order_acq_rel)) { SkDEBUGCODE(fRefCnt = 1;) // restore the 1 for our destructor's assert SkDELETE((const Derived*)this); } } void deref() const { this->unref(); } private: mutable int32_t fRefCnt; }; #endif