/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkMath.h" #include "SkMatrix.h" #include "SkMatrixUtils.h" #include "SkRandom.h" static bool nearly_equal_scalar(SkScalar a, SkScalar b) { // Note that we get more compounded error for multiple operations when // SK_SCALAR_IS_FIXED. #ifdef SK_SCALAR_IS_FLOAT const SkScalar tolerance = SK_Scalar1 / 200000; #else const SkScalar tolerance = SK_Scalar1 / 1024; #endif return SkScalarAbs(a - b) <= tolerance; } static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) { for (int i = 0; i < 9; i++) { if (!nearly_equal_scalar(a[i], b[i])) { printf("not equal %g %g\n", (float)a[i], (float)b[i]); return false; } } return true; } static bool are_equal(skiatest::Reporter* reporter, const SkMatrix& a, const SkMatrix& b) { bool equal = a == b; bool cheapEqual = a.cheapEqualTo(b); if (equal != cheapEqual) { #ifdef SK_SCALAR_IS_FLOAT if (equal) { bool foundZeroSignDiff = false; for (int i = 0; i < 9; ++i) { float aVal = a.get(i); float bVal = b.get(i); int aValI = *SkTCast(&aVal); int bValI = *SkTCast(&bVal); if (0 == aVal && 0 == bVal && aValI != bValI) { foundZeroSignDiff = true; } else { REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI); } } REPORTER_ASSERT(reporter, foundZeroSignDiff); } else { bool foundNaN = false; for (int i = 0; i < 9; ++i) { float aVal = a.get(i); float bVal = b.get(i); int aValI = *SkTCast(&aVal); int bValI = *SkTCast(&bVal); if (sk_float_isnan(aVal) && aValI == bValI) { foundNaN = true; } else { REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); } } REPORTER_ASSERT(reporter, foundNaN); } #else REPORTER_ASSERT(reporter, false); #endif } return equal; } static bool is_identity(const SkMatrix& m) { SkMatrix identity; identity.reset(); return nearly_equal(m, identity); } static void test_matrix_recttorect(skiatest::Reporter* reporter) { SkRect src, dst; SkMatrix matrix; src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10); dst = src; matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType()); REPORTER_ASSERT(reporter, matrix.rectStaysRect()); dst.offset(SK_Scalar1, SK_Scalar1); matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType()); REPORTER_ASSERT(reporter, matrix.rectStaysRect()); dst.fRight += SK_Scalar1; matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); REPORTER_ASSERT(reporter, (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType()); REPORTER_ASSERT(reporter, matrix.rectStaysRect()); dst = src; dst.fRight = src.fRight * 2; matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType()); REPORTER_ASSERT(reporter, matrix.rectStaysRect()); } static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) { // add 100 in case we have a bug, I don't want to kill my stack in the test char buffer[SkMatrix::kMaxFlattenSize + 100]; uint32_t size1 = m.writeToMemory(NULL); uint32_t size2 = m.writeToMemory(buffer); REPORTER_ASSERT(reporter, size1 == size2); REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize); SkMatrix m2; uint32_t size3 = m2.readFromMemory(buffer); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, are_equal(reporter, m, m2)); char buffer2[SkMatrix::kMaxFlattenSize + 100]; size3 = m2.writeToMemory(buffer2); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); } static void test_matrix_max_stretch(skiatest::Reporter* reporter) { SkMatrix identity; identity.reset(); REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxStretch()); SkMatrix scale; scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxStretch()); SkMatrix rot90Scale; rot90Scale.setRotate(90 * SK_Scalar1); rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxStretch()); SkMatrix rotate; rotate.setRotate(128 * SK_Scalar1); REPORTER_ASSERT(reporter, SkScalarAbs(SK_Scalar1 - rotate.getMaxStretch()) <= SK_ScalarNearlyZero); SkMatrix translate; translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxStretch()); SkMatrix perspX; perspX.reset(); perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxStretch()); SkMatrix perspY; perspY.reset(); perspY.setPerspX(SkScalarToPersp(-SK_Scalar1 / 500)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxStretch()); SkMatrix baseMats[] = {scale, rot90Scale, rotate, translate, perspX, perspY}; SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { mats[i] = baseMats[i]; bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); REPORTER_ASSERT(reporter, invertable); } SkMWCRandom rand; for (int m = 0; m < 1000; ++m) { SkMatrix mat; mat.reset(); for (int i = 0; i < 4; ++i) { int x = rand.nextU() % SK_ARRAY_COUNT(mats); mat.postConcat(mats[x]); } SkScalar stretch = mat.getMaxStretch(); if ((stretch < 0) != mat.hasPerspective()) { stretch = mat.getMaxStretch(); } REPORTER_ASSERT(reporter, (stretch < 0) == mat.hasPerspective()); if (mat.hasPerspective()) { m -= 1; // try another non-persp matrix continue; } // test a bunch of vectors. None should be scaled by more than stretch // (modulo some error) and we should find a vector that is scaled by // almost stretch. static const SkScalar gStretchTol = (105 * SK_Scalar1) / 100; static const SkScalar gMaxStretchTol = (97 * SK_Scalar1) / 100; SkScalar max = 0; SkVector vectors[1000]; for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { vectors[i].fX = rand.nextSScalar1(); vectors[i].fY = rand.nextSScalar1(); if (!vectors[i].normalize()) { i -= 1; continue; } } mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { SkScalar d = vectors[i].length(); REPORTER_ASSERT(reporter, SkScalarDiv(d, stretch) < gStretchTol); if (max < d) { max = d; } } REPORTER_ASSERT(reporter, SkScalarDiv(max, stretch) >= gMaxStretchTol); } } static void test_matrix_is_similarity(skiatest::Reporter* reporter) { SkMatrix mat; // identity mat.setIdentity(); REPORTER_ASSERT(reporter, mat.isSimilarity()); // translation only mat.reset(); mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with same size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with one negative mat.reset(); mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scale with same size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective x mat.reset(); mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective y mat.reset(); mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); #ifdef SK_SCALAR_IS_FLOAT /* We bypass the following tests for SK_SCALAR_IS_FIXED build. * The long discussion can be found in this issue: * http://codereview.appspot.com/5999050/ * In short, we haven't found a perfect way to fix the precision * issue, i.e. the way we use tolerance in isSimilarityTransformation * is incorrect. The situation becomes worse in fixed build, so * we disabled rotation related tests for fixed build. */ // rotate for (int angle = 0; angle < 360; ++angle) { mat.reset(); mat.setRotate(SkIntToScalar(angle)); REPORTER_ASSERT(reporter, mat.isSimilarity()); } // see if there are any accumulated precision issues mat.reset(); for (int i = 1; i < 360; i++) { mat.postRotate(SkIntToScalar(1)); } REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + translate mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + non-uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); #endif // all zero mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero except perspective mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scales zero, only skews mat.setAll(0, SK_Scalar1, 0, SK_Scalar1, 0, 0, 0, 0, SkMatrix::I()[8]); REPORTER_ASSERT(reporter, mat.isSimilarity()); } // For test_matrix_decomposition, below. static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) { // from Bruce Dawson SkScalar diff = SkScalarAbs(a - b); if (diff < tolerance) { return true; } a = SkScalarAbs(a); b = SkScalarAbs(b); SkScalar largest = (b > a) ? b : a; if (diff <= largest*tolerance) { return true; } return false; } static void test_matrix_decomposition(skiatest::Reporter* reporter) { SkMatrix mat; SkScalar rotation0, scaleX, scaleY, rotation1; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; const float kScale0 = 5000.f; const float kScale1 = 0.001f; // identity mat.reset(); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // make sure it doesn't crash if we pass in NULLs REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL)); // rotation only mat.setRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale only mat.setScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // anisotropic scale only mat.setScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then uniform scale mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale then rotation mat.setScale(kScale0, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then uniform scale+reflection mat.setRotate(kRotation0); mat.postScale(kScale1, -kScale1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale+reflection, then rotate mat.setScale(kScale0, -kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then anisotropic scale mat.setRotate(kRotation1); mat.postScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // anisotropic scale then rotation mat.setScale(kScale1, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0))); // rotation, uniform scale, then different rotation mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0 + kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation, anisotropic scale, then different rotation mat.setRotate(kRotation0); mat.postScale(kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); // Because of the shear/skew we won't get the same results, so we need to multiply it out. // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian // calculation (in setRotate()), which adds error, so this just computes the matrix elements // directly. SkScalar c0; SkScalar s0 = SkScalarSinCos(rotation0, &c0); SkScalar c1; SkScalar s1 = SkScalarSinCos(rotation1, &c1); // We do a relative check here because large scale factors cause problems with an absolute check REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // try some random matrices SkMWCRandom rand; for (int m = 0; m < 1000; ++m) { SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); mat.setRotate(rot0); mat.postScale(sx, sy); mat.postRotate(rot1); if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) { SkScalar c0; SkScalar s0 = SkScalarSinCos(rotation0, &c0); SkScalar c1; SkScalar s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); } else { // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); } } // translation shouldn't affect this mat.postTranslate(-1000.f, 1000.f); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // perspective shouldn't affect this mat[SkMatrix::kMPersp0] = 12.f; mat[SkMatrix::kMPersp1] = 4.f; mat[SkMatrix::kMPersp2] = 1872.f; REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // rotation, anisotropic scale + reflection, then different rotation mat.setRotate(kRotation0); mat.postScale(-kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // degenerate matrices // mostly zero entries mat.reset(); mat[SkMatrix::kMScaleX] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); mat.reset(); mat[SkMatrix::kMScaleY] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); mat.reset(); // linearly dependent entries mat[SkMatrix::kMScaleX] = 1.f; mat[SkMatrix::kMSkewX] = 2.f; mat[SkMatrix::kMSkewY] = 4.f; mat[SkMatrix::kMScaleY] = 8.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); } // For test_matrix_homogeneous, below. static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) { for (int i = 0; i < count; ++i) { if (!scalar_nearly_equal_relative(a[i], b[i])) { return false; } } return true; } // For test_matrix_homogeneous, below. // Maps a single triple in src using m and compares results to those in dst static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3], const SkScalar dst[3]) { SkScalar res[3]; res[0] = src[0] * m[0] + src[1] * m[1] + src[2] * m[2]; res[1] = src[0] * m[3] + src[1] * m[4] + src[2] * m[5]; res[2] = src[0] * m[6] + src[1] * m[7] + src[2] * m[8]; return scalar_array_nearly_equal_relative(res, dst, 3); } static void test_matrix_homogeneous(skiatest::Reporter* reporter) { SkMatrix mat; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; const float kScale0 = 5000.f; const int kTripleCount = 1000; const int kMatrixCount = 1000; SkRandom rand; SkScalar randTriples[3*kTripleCount]; for (int i = 0; i < 3*kTripleCount; ++i) { randTriples[i] = rand.nextRangeF(-3000.f, 3000.f); } SkMatrix mats[kMatrixCount]; for (int i = 0; i < kMatrixCount; ++i) { for (int j = 0; j < 9; ++j) { mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); } } // identity { mat.reset(); SkScalar dst[3*kTripleCount]; mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3)); } // zero matrix { mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); SkScalar dst[3*kTripleCount]; mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); SkScalar zeros[3] = {0.f, 0.f, 0.f}; for (int i = 0; i < kTripleCount; ++i) { REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3)); } } // zero point { SkScalar zeros[3] = {0.f, 0.f, 0.f}; for (int i = 0; i < kMatrixCount; ++i) { SkScalar dst[3]; mats[i].mapHomogeneousPoints(dst, zeros, 1); REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3)); } } // doesn't crash with null dst, src, count == 0 { mats[0].mapHomogeneousPoints(NULL, NULL, 0); } // uniform scale of point { mat.setScale(kScale0, kScale0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // rotation of point { mat.setRotate(kRotation0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // rotation, scale, rotation of point { mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // compare with naive approach { for (int i = 0; i < kMatrixCount; ++i) { for (int j = 0; j < kTripleCount; ++j) { SkScalar dst[3]; mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1); REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst)); } } } } static void TestMatrix(skiatest::Reporter* reporter) { SkMatrix mat, inverse, iden1, iden2; mat.reset(); mat.setTranslate(SK_Scalar1, SK_Scalar1); REPORTER_ASSERT(reporter, mat.invert(&inverse)); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); mat.setScale(SkIntToScalar(2), SkIntToScalar(4)); REPORTER_ASSERT(reporter, mat.invert(&inverse)); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); test_flatten(reporter, mat); mat.setScale(SK_Scalar1/2, SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.invert(&inverse)); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); test_flatten(reporter, mat); mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0); mat.postRotate(SkIntToScalar(25)); REPORTER_ASSERT(reporter, mat.invert(NULL)); REPORTER_ASSERT(reporter, mat.invert(&inverse)); iden1.setConcat(mat, inverse); REPORTER_ASSERT(reporter, is_identity(iden1)); iden2.setConcat(inverse, mat); REPORTER_ASSERT(reporter, is_identity(iden2)); test_flatten(reporter, mat); test_flatten(reporter, iden2); mat.setScale(0, SK_Scalar1); REPORTER_ASSERT(reporter, !mat.invert(NULL)); REPORTER_ASSERT(reporter, !mat.invert(&inverse)); mat.setScale(SK_Scalar1, 0); REPORTER_ASSERT(reporter, !mat.invert(NULL)); REPORTER_ASSERT(reporter, !mat.invert(&inverse)); // rectStaysRect test { static const struct { SkScalar m00, m01, m10, m11; bool mStaysRect; } gRectStaysRectSamples[] = { { 0, 0, 0, 0, false }, { 0, 0, 0, SK_Scalar1, false }, { 0, 0, SK_Scalar1, 0, false }, { 0, 0, SK_Scalar1, SK_Scalar1, false }, { 0, SK_Scalar1, 0, 0, false }, { 0, SK_Scalar1, 0, SK_Scalar1, false }, { 0, SK_Scalar1, SK_Scalar1, 0, true }, { 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }, { SK_Scalar1, 0, 0, 0, false }, { SK_Scalar1, 0, 0, SK_Scalar1, true }, { SK_Scalar1, 0, SK_Scalar1, 0, false }, { SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false }, { SK_Scalar1, SK_Scalar1, 0, 0, false }, { SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false }, { SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false }, { SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) { SkMatrix m; m.reset(); m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00); m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01); m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10); m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11); REPORTER_ASSERT(reporter, m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect); } } mat.reset(); mat.set(SkMatrix::kMScaleX, SkIntToScalar(1)); mat.set(SkMatrix::kMSkewX, SkIntToScalar(2)); mat.set(SkMatrix::kMTransX, SkIntToScalar(3)); mat.set(SkMatrix::kMSkewY, SkIntToScalar(4)); mat.set(SkMatrix::kMScaleY, SkIntToScalar(5)); mat.set(SkMatrix::kMTransY, SkIntToScalar(6)); SkScalar affine[6]; REPORTER_ASSERT(reporter, mat.asAffine(affine)); #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e) REPORTER_ASSERT(reporter, affineEqual(ScaleX)); REPORTER_ASSERT(reporter, affineEqual(SkewY)); REPORTER_ASSERT(reporter, affineEqual(SkewX)); REPORTER_ASSERT(reporter, affineEqual(ScaleY)); REPORTER_ASSERT(reporter, affineEqual(TransX)); REPORTER_ASSERT(reporter, affineEqual(TransY)); #undef affineEqual mat.set(SkMatrix::kMPersp1, SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.asAffine(affine)); SkMatrix mat2; mat2.reset(); mat.reset(); SkScalar zero = 0; mat.set(SkMatrix::kMSkewX, -zero); REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); mat2.reset(); mat.reset(); mat.set(SkMatrix::kMSkewX, SK_ScalarNaN); mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN); // fixed pt doesn't have the property that NaN does not equal itself. #ifdef SK_SCALAR_IS_FIXED REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); #else REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2)); #endif test_matrix_max_stretch(reporter); test_matrix_is_similarity(reporter); test_matrix_recttorect(reporter); test_matrix_decomposition(reporter); test_matrix_homogeneous(reporter); } #include "TestClassDef.h" DEFINE_TESTCLASS("Matrix", MatrixTestClass, TestMatrix)