/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkColorPriv.h" #include "include/core/SkFont.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/utils/SkRandom.h" #include "samplecode/Sample.h" #include "src/core/SkClipOpPriv.h" #include "src/core/SkPathPriv.h" constexpr int W = 150; constexpr int H = 200; static void show_text(SkCanvas* canvas, bool doAA) { SkRandom rand; SkPaint paint; SkFont font(nullptr, 20); font.setEdging(doAA ? SkFont::Edging::kSubpixelAntiAlias : SkFont::Edging::kAlias); for (int i = 0; i < 200; ++i) { paint.setColor((SK_A32_MASK << SK_A32_SHIFT) | rand.nextU()); canvas->drawString("Hamburgefons", rand.nextSScalar1() * W, rand.nextSScalar1() * H + 20, font, paint); } } static void show_fill(SkCanvas* canvas, bool doAA) { SkRandom rand; SkPaint paint; paint.setAntiAlias(doAA); for (int i = 0; i < 50; ++i) { SkRect r; SkPath p; r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H, rand.nextUScalar1() * W, rand.nextUScalar1() * H); paint.setColor(rand.nextU()); canvas->drawRect(r, paint); r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H, rand.nextUScalar1() * W, rand.nextUScalar1() * H); paint.setColor(rand.nextU()); p.addOval(r); canvas->drawPath(p, paint); } } static SkScalar randRange(SkRandom& rand, SkScalar min, SkScalar max) { SkASSERT(min <= max); return min + rand.nextUScalar1() * (max - min); } static void show_stroke(SkCanvas* canvas, bool doAA, SkScalar strokeWidth, int n) { SkRandom rand; SkPaint paint; paint.setAntiAlias(doAA); paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(strokeWidth); for (int i = 0; i < n; ++i) { SkRect r; SkPath p; r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H, rand.nextUScalar1() * W, rand.nextUScalar1() * H); paint.setColor(rand.nextU()); canvas->drawRect(r, paint); r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H, rand.nextUScalar1() * W, rand.nextUScalar1() * H); paint.setColor(rand.nextU()); p.addOval(r); canvas->drawPath(p, paint); const SkScalar minx = -SkIntToScalar(W)/4; const SkScalar maxx = 5*SkIntToScalar(W)/4; const SkScalar miny = -SkIntToScalar(H)/4; const SkScalar maxy = 5*SkIntToScalar(H)/4; paint.setColor(rand.nextU()); canvas->drawLine(randRange(rand, minx, maxx), randRange(rand, miny, maxy), randRange(rand, minx, maxx), randRange(rand, miny, maxy), paint); } } static void show_hair(SkCanvas* canvas, bool doAA) { show_stroke(canvas, doAA, 0, 150); } static void show_thick(SkCanvas* canvas, bool doAA) { show_stroke(canvas, doAA, SkIntToScalar(5), 50); } typedef void (*CanvasProc)(SkCanvas*, bool); class ClipView : public Sample { SkString name() override { return SkString("Clip"); } void onDrawContent(SkCanvas* canvas) override { canvas->drawColor(SK_ColorWHITE); canvas->translate(SkIntToScalar(20), SkIntToScalar(20)); static const CanvasProc gProc[] = { show_text, show_thick, show_hair, show_fill }; SkRect r = { 0, 0, SkIntToScalar(W), SkIntToScalar(H) }; SkPath clipPath; r.inset(SK_Scalar1 / 4, SK_Scalar1 / 4); clipPath.addRoundRect(r, SkIntToScalar(20), SkIntToScalar(20)); // clipPath.toggleInverseFillType(); for (int aa = 0; aa <= 1; ++aa) { canvas->save(); for (size_t i = 0; i < SK_ARRAY_COUNT(gProc); ++i) { canvas->save(); canvas->clipPath(clipPath, kIntersect_SkClipOp, SkToBool(aa)); // canvas->drawColor(SK_ColorWHITE); gProc[i](canvas, SkToBool(aa)); canvas->restore(); canvas->translate(W * SK_Scalar1 * 8 / 7, 0); } canvas->restore(); canvas->translate(0, H * SK_Scalar1 * 8 / 7); } } }; DEF_SAMPLE( return new ClipView(); ) /////////////////////////////////////////////////////////////////////////////// struct SkHalfPlane { SkScalar fA, fB, fC; SkScalar eval(SkScalar x, SkScalar y) const { return fA * x + fB * y + fC; } SkScalar operator()(SkScalar x, SkScalar y) const { return this->eval(x, y); } bool twoPts(SkPoint pts[2]) const { // normalize plane to help with the perpendicular step, below SkScalar len = SkScalarSqrt(fA*fA + fB*fB); if (!len) { return false; } SkScalar denom = SkScalarInvert(len); SkScalar a = fA * denom; SkScalar b = fB * denom; SkScalar c = fC * denom; // We compute p0 on the half-plane by setting one of the components to 0 // We compute p1 by stepping from p0 along a perpendicular to the normal if (b) { pts[0] = { 0, -c / b }; pts[1] = { b, pts[0].fY - a}; } else if (a) { pts[0] = { -c / a, 0 }; pts[1] = { pts[0].fX + b, -a }; } else { return false; } SkASSERT(SkScalarNearlyZero(this->operator()(pts[0].fX, pts[0].fY))); SkASSERT(SkScalarNearlyZero(this->operator()(pts[1].fX, pts[1].fY))); return true; } enum Result { kAllNegative, kAllPositive, kMixed }; Result test(const SkRect& bounds) const { SkPoint diagMin, diagMax; if (fA >= 0) { diagMin.fX = bounds.fLeft; diagMax.fX = bounds.fRight; } else { diagMin.fX = bounds.fRight; diagMax.fX = bounds.fLeft; } if (fB >= 0) { diagMin.fY = bounds.fTop; diagMax.fY = bounds.fBottom; } else { diagMin.fY = bounds.fBottom; diagMax.fY = bounds.fTop; } SkScalar test = this->eval(diagMin.fX, diagMin.fY); SkScalar sign = test*this->eval(diagMax.fX, diagMin.fY); if (sign > 0) { // the path is either all on one side of the half-plane or the other if (test < 0) { return kAllNegative; } else { return kAllPositive; } } return kMixed; } }; #include "src/core/SkEdgeClipper.h" static void clip(const SkPath& path, SkPoint p0, SkPoint p1, SkPath* clippedPath) { SkMatrix mx, inv; SkVector v = p1 - p0; mx.setAll(v.fX, -v.fY, p0.fX, v.fY, v.fX, p0.fY, 0, 0, 1); SkAssertResult(mx.invert(&inv)); SkPath rotated; path.transform(inv, &rotated); SkScalar big = 1e28f; SkRect clip = {-big, 0, big, big }; struct Rec { SkPath* fResult; SkPoint fPrev; } rec = { clippedPath, {0, 0} }; SkEdgeClipper::ClipPath(rotated, clip, false, [](SkEdgeClipper* clipper, bool newCtr, void* ctx) { Rec* rec = (Rec*)ctx; bool addLineTo = false; SkPoint pts[4]; SkPath::Verb verb; while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) { if (newCtr) { rec->fResult->moveTo(pts[0]); rec->fPrev = pts[0]; newCtr = false; } if (addLineTo || pts[0] != rec->fPrev) { rec->fResult->lineTo(pts[0]); } switch (verb) { case SkPath::kLine_Verb: rec->fResult->lineTo(pts[1]); rec->fPrev = pts[1]; break; case SkPath::kQuad_Verb: rec->fResult->quadTo(pts[1], pts[2]); rec->fPrev = pts[2]; break; case SkPath::kCubic_Verb: rec->fResult->cubicTo(pts[1], pts[2], pts[3]); rec->fPrev = pts[3]; break; default: break; } addLineTo = true; } }, &rec); rec.fResult->transform(mx); } static void draw_halfplane(SkCanvas* canvas, SkPoint p0, SkPoint p1, SkColor c) { SkVector v = p1 - p0; p0 = p0 - v * 1000; p1 = p1 + v * 1000; SkPaint paint; paint.setColor(c); canvas->drawLine(p0, p1, paint); } static SkPath make_path() { SkRandom rand; auto rand_pt = [&rand]() { auto x = rand.nextF(); auto y = rand.nextF(); return SkPoint{x * 400, y * 400}; }; SkPath path; for (int i = 0; i < 4; ++i) { SkPoint pts[6]; for (auto& p : pts) { p = rand_pt(); } path.moveTo(pts[0]).quadTo(pts[1], pts[2]).quadTo(pts[3], pts[4]).lineTo(pts[5]); } return path; } class HalfPlaneView : public Sample { SkPoint fPts[2]; SkPath fPath; SkString name() override { return SkString("halfplane"); } void onOnceBeforeDraw() override { fPts[0] = {0, 0}; fPts[1] = {3, 2}; fPath = make_path(); } void onDrawContent(SkCanvas* canvas) override { SkPaint paint; paint.setColor({0.5f, 0.5f, 0.5f, 1.0f}, nullptr); canvas->drawPath(fPath, paint); paint.setColor({0, 0, 0, 1}, nullptr); SkPath clippedPath; clip(fPath, fPts[0], fPts[1], &clippedPath); canvas->drawPath(clippedPath, paint); draw_halfplane(canvas, fPts[0], fPts[1], SK_ColorRED); } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { return new Click; } bool onClick(Click* click) override { fPts[0] = click->fCurr; fPts[1] = fPts[0] + SkPoint{3, 2}; return true; } }; DEF_SAMPLE( return new HalfPlaneView(); ) static void draw_halfplane(SkCanvas* canvas, const SkHalfPlane& p, SkColor c) { SkPoint pts[2]; p.twoPts(pts); draw_halfplane(canvas, pts[0], pts[1], c); } static void compute_half_planes(const SkMatrix& mx, SkScalar W, SkScalar H, SkHalfPlane planes[4]) { SkScalar a = mx[0], b = mx[1], c = mx[2], d = mx[3], e = mx[4], f = mx[5], g = mx[6], h = mx[7], i = mx[8]; planes[0] = { 2*g - 2*a/W, 2*h - 2*b/W, 2*i - 2*c/W }; planes[1] = { 2*a/W, 2*b/W, 2*c/W }; planes[2] = { 2*g - 2*d/H, 2*h - 2*e/H, 2*i - 2*f/H }; planes[3] = { 2*d/H, 2*e/H, 2*f/H }; } class HalfPlaneView2 : public Sample { SkPoint fPts[4]; SkPath fPath; SkString name() override { return SkString("halfplane2"); } void onOnceBeforeDraw() override { fPath = make_path(); SkRect r = fPath.getBounds(); r.toQuad(fPts); } void onDrawContent(SkCanvas* canvas) override { SkMatrix mx; { SkRect r = fPath.getBounds(); SkPoint src[4]; r.toQuad(src); mx.setPolyToPoly(src, fPts, 4); } SkPaint paint; canvas->drawPath(fPath, paint); canvas->save(); canvas->concat(mx); paint.setColor(0x40FF0000); canvas->drawPath(fPath, paint); canvas->restore(); // draw the frame paint.setStrokeWidth(10); paint.setColor(SK_ColorGREEN); canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPts, paint); // draw the half-planes SkHalfPlane planes[4]; compute_half_planes(mx, 400, 400, planes); for (auto& p : planes) { draw_halfplane(canvas, p, SK_ColorRED); } } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { SkScalar r = 8; SkRect rect = SkRect::MakeXYWH(x - r, y - r, 2*r, 2*r); for (int i = 0; i < 4; ++i) { if (rect.contains(fPts[i].fX, fPts[i].fY)) { Click* c = new Click; c->fMeta.setS32("index", i); return c; } } return nullptr; } bool onClick(Click* click) override { int32_t index; SkAssertResult(click->fMeta.findS32("index", &index)); SkASSERT(index >= 0 && index < 4); fPts[index] = click->fCurr; return true; } }; DEF_SAMPLE( return new HalfPlaneView2(); ) #include "include/core/SkMatrix44.h" #include "include/utils/Sk3D.h" #include "tools/Resources.h" static SkMatrix44 inv(const SkMatrix44& m) { SkMatrix44 inverse; SkAssertResult(m.invert(&inverse)); return inverse; } #if 0 // Jim's general half-planes math static void half_planes(const SkMatrix44& m44, SkScalar W, SkScalar H, SkHalfPlane planes[6]) { float mx[16]; m44.asColMajorf(mx); SkScalar a = mx[0], b = mx[4], /* c = mx[ 8], */ d = mx[12], e = mx[1], f = mx[5], /* g = mx[ 9], */ h = mx[13], i = mx[2], j = mx[6], /* k = mx[10], */ l = mx[14], m = mx[3], n = mx[7], /* o = mx[11], */ p = mx[15]; a = 2*a/W - m; b = 2*b/W - n; d = 2*d/W - p; e = 2*e/H - m; f = 2*f/H - n; h = 2*h/H - p; // i = 2*i - m; j = 2*j - n; l = 2*l - p; planes[0] = { m - a, n - b, p - d }; // w - x planes[1] = { m + a, n + b, p + d }; // w + x planes[2] = { m - e, n - f, p - h }; // w - y planes[3] = { m + e, n + f, p + h }; // w + y planes[4] = { m - i, n - j, p - l }; // w - z planes[5] = { m + i, n + j, p + l }; // w + z } #endif static SkHalfPlane half_plane_w0(const SkMatrix& m) { return { m[SkMatrix::kMPersp0], m[SkMatrix::kMPersp1], m[SkMatrix::kMPersp2] - 0.05f }; } class HalfPlaneView3 : public Sample { float fNear = 0.05f; float fFar = 4; float fAngle = SK_ScalarPI / 4; SkPoint3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 }; SkPoint3 fCOA { 0, 0, 0 }; SkPoint3 fUp { 0, 1, 0 }; SkMatrix44 fRot; SkPoint3 fTrans; SkPath fPath; sk_sp fShader; bool fShowUnclipped = false; SkString name() override { return SkString("halfplane3"); } void onOnceBeforeDraw() override { fPath = make_path(); fShader = GetResourceAsImage("images/mandrill_128.png") ->makeShader(SkMatrix::MakeScale(3, 3)); } void rotate(float x, float y, float z) { SkMatrix44 r; if (x) { r.setRotateAboutUnit(1, 0, 0, x); } else if (y) { r.setRotateAboutUnit(0, 1, 0, y); } else { r.setRotateAboutUnit(0, 0, 1, z); } fRot.postConcat(r); } SkMatrix44 get44() const { SkMatrix44 camera, perspective, translate, viewport; Sk3Perspective(&perspective, fNear, fFar, fAngle); Sk3LookAt(&camera, fEye, fCOA, fUp); translate.setTranslate(fTrans.fX, fTrans.fY, fTrans.fZ); viewport.setScale(200, 200, 1).postTranslate( 200, 200, 0); return viewport * perspective * camera * translate * fRot * inv(viewport); } void onDrawContent(SkCanvas* canvas) override { SkMatrix mx = this->get44(); SkPaint paint; paint.setColor({0.75, 0.75, 0.75, 1}); canvas->drawPath(fPath, paint); paint.setShader(fShader); if (fShowUnclipped) { canvas->save(); canvas->concat(mx); paint.setAlphaf(0.33f); canvas->drawPath(fPath, paint); paint.setAlphaf(1.f); canvas->restore(); } SkColor planeColor = SK_ColorBLUE; SkPath clippedPath, *path = &fPath; if (SkPathPriv::PerspectiveClip(fPath, mx, &clippedPath)) { path = &clippedPath; planeColor = SK_ColorRED; } canvas->save(); canvas->concat(mx); canvas->drawPath(*path, paint); canvas->restore(); SkHalfPlane hpw = half_plane_w0(mx); draw_halfplane(canvas, hpw, planeColor); } bool onChar(SkUnichar uni) override { float delta = SK_ScalarPI / 30; switch (uni) { case '8': this->rotate( delta, 0, 0); return true; case '2': this->rotate(-delta, 0, 0); return true; case '4': this->rotate(0, delta, 0); return true; case '6': this->rotate(0, -delta, 0); return true; case '-': this->rotate(0, 0, delta); return true; case '+': this->rotate(0, 0, -delta); return true; case 'i': fTrans.fZ += 0.1f; SkDebugf("z %g\n", fTrans.fZ); return true; case 'k': fTrans.fZ -= 0.1f; SkDebugf("z %g\n", fTrans.fZ); return true; case 'n': fNear += 0.1f; SkDebugf("near %g\n", fNear); return true; case 'N': fNear -= 0.1f; SkDebugf("near %g\n", fNear); return true; case 'f': fFar += 0.1f; SkDebugf("far %g\n", fFar); return true; case 'F': fFar -= 0.1f; SkDebugf("far %g\n", fFar); return true; case 'u': fShowUnclipped = !fShowUnclipped; return true; default: break; } return false; } Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { return nullptr; } bool onClick(Click* click) override { return false; } }; DEF_SAMPLE( return new HalfPlaneView3(); )