/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrXferProcessor_DEFINED #define GrXferProcessor_DEFINED #include "GrColor.h" #include "GrProcessor.h" #include "GrTypes.h" #include "SkXfermode.h" class GrDrawTargetCaps; class GrGLCaps; class GrGLXferProcessor; class GrProcOptInfo; /** * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst * color. It does this by emitting fragment shader code and controlling the fixed-function blend * state. The inputs to its shader code are the final computed src color and fractional pixel * coverage. The GrXferProcessor's shader code writes the fragment shader output color that goes * into the fixed-function blend. When dual-source blending is available, it may also write a * seconday fragment shader output color. When allowed by the backend API, the GrXferProcessor may * read the destination color. The GrXferProcessor is responsible for setting the blend coefficients * and blend constant color. * * A GrXferProcessor is never installed directly into our draw state, but instead is created from a * GrXPFactory once we have finalized the state of our draw. */ class GrXferProcessor : public GrProcessor { public: /** * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer * processor's GL backend implementation. */ virtual void getGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const = 0; /** Returns a new instance of the appropriate *GL* implementation class for the given GrXferProcessor; caller is responsible for deleting the object. */ virtual GrGLXferProcessor* createGLInstance() const = 0; /** * Optimizations for blending / coverage that an OptDrawState should apply to itself. */ enum OptFlags { /** * No optimizations needed */ kNone_Opt = 0, /** * The draw can be skipped completely. */ kSkipDraw_OptFlag = 0x1, /** * GrXferProcessor will ignore color, thus no need to provide */ kIgnoreColor_OptFlag = 0x2, /** * GrXferProcessor will ignore coverage, thus no need to provide */ kIgnoreCoverage_OptFlag = 0x4, /** * Clear color stages and override input color to that returned by getOptimizations */ kOverrideColor_OptFlag = 0x8, /** * Set CoverageDrawing_StateBit */ kSetCoverageDrawing_OptFlag = 0x10, }; GR_DECL_BITFIELD_OPS_FRIENDS(OptFlags); /** * Determines which optimizations (as described by the ptFlags above) can be performed by * the draw with this xfer processor. If this function is called, the xfer processor may change * its state to reflected the given blend optimizations. If the XP needs to see a specific input * color to blend correctly, it will set the OverrideColor flag and the output parameter * overrideColor will be the required value that should be passed into the XP. * A caller who calls this function on a XP is required to honor the returned OptFlags * and color values for its draw. */ // TODO: remove need for colorWriteDisabled once colorWriteDisabled is its own XP. virtual OptFlags getOptimizations(const GrProcOptInfo& colorPOI, const GrProcOptInfo& coveragePOI, bool colorWriteDisabled, bool doesStencilWrite, GrColor* overrideColor, const GrDrawTargetCaps& caps) = 0; struct BlendInfo { GrBlendCoeff fSrcBlend; GrBlendCoeff fDstBlend; GrColor fBlendConstant; }; virtual void getBlendInfo(BlendInfo* blendInfo) const = 0; /** Will this prceossor read the destination pixel value? */ bool willReadDstColor() const { return fWillReadDstColor; } /** * Returns whether or not this xferProcossor will set a secondary output to be used with dual * source blending. */ virtual bool hasSecondaryOutput() const { return false; } /** Returns true if this and other processor conservatively draw identically. It can only return true when the two processor are of the same subclass (i.e. they return the same object from from getFactory()). A return value of true from isEqual() should not be used to test whether the processor would generate the same shader code. To test for identical code generation use getGLProcessorKey*/ bool isEqual(const GrXferProcessor& that) const { if (this->classID() != that.classID()) { return false; } return this->onIsEqual(that); } protected: GrXferProcessor() : fWillReadDstColor(false) {} /** * If the prceossor subclass will read the destination pixel value then it must call this * function from its constructor. Otherwise, when its generated backend-specific prceossor class * attempts to generate code that reads the destination pixel it will fail. */ void setWillReadDstColor() { fWillReadDstColor = true; } private: virtual bool onIsEqual(const GrXferProcessor&) const = 0; bool fWillReadDstColor; typedef GrFragmentProcessor INHERITED; }; GR_MAKE_BITFIELD_OPS(GrXferProcessor::OptFlags); /** * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the * draw information to create a GrXferProcessor (XP) which can implement the desired blending for * the draw. * * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it * creates will have. For example, can it create an XP that supports RGB coverage or will the XP * blend with the destination color. */ class GrXPFactory : public SkRefCnt { public: virtual GrXferProcessor* createXferProcessor(const GrProcOptInfo& colorPOI, const GrProcOptInfo& coveragePOI) const = 0; /** * This function returns true if the GrXferProcessor generated from this factory will be able to * correctly blend when using RGB coverage. The knownColor and knownColorFlags represent the * final computed color from the color stages. */ virtual bool supportsRGBCoverage(GrColor knownColor, uint32_t knownColorFlags) const = 0; /** * Depending on color blend mode requested it may or may not be possible to correctly blend with * fractional pixel coverage generated by the fragment shader. * * This function considers the known color and coverage input into the xfer processor and * certain state information (colorWriteDisabled) to determine whether * coverage can be handled correctly. */ // TODO: remove need for colorWriteDisabled once colorWriteDisabled is its own XP. virtual bool canApplyCoverage(const GrProcOptInfo& colorPOI, const GrProcOptInfo& coveragePOI, bool colorWriteDisabled) const = 0; struct InvariantOutput { bool fWillBlendWithDst; GrColor fBlendedColor; uint32_t fBlendedColorFlags; }; /** * This function returns known information about the output of the xfer processor produced by * this xp factory. The invariant color information returned by this function refers to the * final color produced after all blending. */ // TODO: remove need for colorWriteDisabled once only XP can read dst. virtual void getInvariantOutput(const GrProcOptInfo& colorPOI, const GrProcOptInfo& coveragePOI, bool colorWriteDisabled, InvariantOutput*) const = 0; /** * Determines whether multiplying the computed per-pixel color by the pixel's fractional * coverage before the blend will give the correct final destination color. In general it * will not as coverage is applied after blending. */ virtual bool canTweakAlphaForCoverage() const = 0; bool isEqual(const GrXPFactory& that) const { if (this->classID() != that.classID()) { return false; } return this->onIsEqual(that); } /** * Helper for down-casting to a GrXPFactory subclass */ template const T& cast() const { return *static_cast(this); } uint32_t classID() const { SkASSERT(kIllegalXPFClassID != fClassID); return fClassID; } protected: GrXPFactory() : fClassID(kIllegalXPFClassID) {} template void initClassID() { static uint32_t kClassID = GenClassID(); fClassID = kClassID; } uint32_t fClassID; private: virtual bool onIsEqual(const GrXPFactory&) const = 0; static uint32_t GenClassID() { // fCurrXPFactoryID has been initialized to kIllegalXPFactoryID. The // atomic inc returns the old value not the incremented value. So we add // 1 to the returned value. uint32_t id = static_cast(sk_atomic_inc(&gCurrXPFClassID)) + 1; if (!id) { SkFAIL("This should never wrap as it should only be called once for each GrXPFactory " "subclass."); } return id; } enum { kIllegalXPFClassID = 0, }; static int32_t gCurrXPFClassID; typedef GrProgramElement INHERITED; }; #endif