/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DMSrcSink.h" #include #include #include "../src/jumper/SkJumper.h" #include "Resources.h" #include "SkAndroidCodec.h" #include "SkAutoMalloc.h" #include "SkBase64.h" #include "SkCodec.h" #include "SkCodecImageGenerator.h" #include "SkColorSpace.h" #include "SkColorSpaceXform.h" #include "SkColorSpaceXformCanvas.h" #include "SkColorSpace_XYZ.h" #include "SkCommonFlags.h" #include "SkCommonFlagsGpu.h" #include "SkData.h" #include "SkDebugCanvas.h" #include "SkDeferredDisplayListRecorder.h" #include "SkDocument.h" #include "SkExecutor.h" #include "SkImageGenerator.h" #include "SkImageGeneratorCG.h" #include "SkImageGeneratorWIC.h" #include "SkImageInfoPriv.h" #include "SkLiteDL.h" #include "SkLiteRecorder.h" #include "SkMallocPixelRef.h" #include "SkMultiPictureDocumentPriv.h" #include "SkMultiPictureDraw.h" #include "SkNullCanvas.h" #include "SkOSFile.h" #include "SkOSPath.h" #include "SkOpts.h" #include "SkPictureCommon.h" #include "SkPictureData.h" #include "SkPictureRecorder.h" #include "SkPipe.h" #include "SkPngEncoder.h" #include "SkRandom.h" #include "SkRecordDraw.h" #include "SkRecorder.h" #include "SkSVGCanvas.h" #include "SkStream.h" #include "SkSurfaceCharacterization.h" #include "SkSwizzler.h" #include "SkTLogic.h" #include "SkTaskGroup.h" #include "SkThreadedBMPDevice.h" #if defined(SK_BUILD_FOR_WIN) #include "SkAutoCoInitialize.h" #include "SkHRESULT.h" #include "SkTScopedComPtr.h" #include #endif #if !defined(SK_BUILD_FOR_GOOGLE3) #include "Skottie.h" #endif #if defined(SK_XML) #include "SkSVGDOM.h" #include "SkXMLWriter.h" #endif #if SK_SUPPORT_GPU #include "GrBackendSurface.h" #include "GrContextPriv.h" #include "GrGpu.h" #endif DEFINE_bool(multiPage, false, "For document-type backends, render the source" " into multiple pages"); DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?"); using sk_gpu_test::GrContextFactory; namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { std::unique_ptr gm(fFactory(nullptr)); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { std::unique_ptr gm(fFactory(nullptr)); return gm->getISize(); } Name GMSrc::name() const { std::unique_ptr gm(fFactory(nullptr)); return gm->getName(); } void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { std::unique_ptr gm(fFactory(nullptr)); gm->modifyGrContextOptions(options); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fSampleSize(sampleSize) {} bool BRDSrc::veto(SinkFlags flags) const { // No need to test to non-raster or indirect backends. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } static SkBitmapRegionDecoder* create_brd(Path path) { sk_sp encoded(SkData::MakeFromFileName(path.c_str())); if (!encoded) { return nullptr; } return SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy); } static inline void alpha8_to_gray8(SkBitmap* bitmap) { // Android requires kGray8 bitmaps to be tagged as kAlpha8. Here we convert // them back to kGray8 so our test framework can draw them correctly. if (kAlpha_8_SkColorType == bitmap->info().colorType()) { SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType) .makeAlphaType(kOpaque_SkAlphaType); *const_cast(&bitmap->info()) = newInfo; } } Error BRDSrc::draw(SkCanvas* canvas) const { if (canvas->imageInfo().colorSpace() && kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) { // SkAndroidCodec uses legacy premultiplication and blending. Therefore, we only // run these tests on legacy canvases. // We allow an exception for F16, since Android uses F16. return Error::Nonfatal("Skip testing to color correct canvas."); } SkColorType colorType = canvas->imageInfo().colorType(); if (kRGB_565_SkColorType == colorType && CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } switch (fDstColorType) { case CodecSrc::kGetFromCanvas_DstColorType: break; case CodecSrc::kGrayscale_Always_DstColorType: colorType = kGray_8_SkColorType; break; default: SkASSERT(false); break; } std::unique_ptr brd(create_brd(fPath)); if (nullptr == brd.get()) { return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str())); } auto recommendedCT = brd->computeOutputColorType(colorType); if (kRGB_565_SkColorType == colorType && recommendedCT != colorType) { return Error::Nonfatal("Skip decoding non-opaque to 565."); } colorType = recommendedCT; auto colorSpace = brd->computeOutputColorSpace(colorType, nullptr); const uint32_t width = brd->width(); const uint32_t height = brd->height(); // Visually inspecting very small output images is not necessary. if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } switch (fMode) { case kFullImage_Mode: { SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), fSampleSize, colorType, false, colorSpace)) { return "Cannot decode (full) region."; } alpha8_to_gray8(&bitmap); canvas->drawBitmap(bitmap, 0, 0); return ""; } case kDivisor_Mode: { const uint32_t divisor = 2; if (width < divisor || height < divisor) { return Error::Nonfatal("Divisor is larger than image dimension."); } // Use a border to test subsets that extend outside the image. // We will not allow the border to be larger than the image dimensions. Allowing // these large borders causes off by one errors that indicate a problem with the // test suite, not a problem with the implementation. const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor); const uint32_t scaledBorder = SkTMin(5u, maxBorder); const uint32_t unscaledBorder = scaledBorder * fSampleSize; // We may need to clear the canvas to avoid uninitialized memory. // Assume we are scaling a 780x780 image with sampleSize = 8. // The output image should be 97x97. // Each subset will be 390x390. // Each scaled subset be 48x48. // Four scaled subsets will only fill a 96x96 image. // The bottom row and last column will not be touched. // This is an unfortunate result of our rounding rules when scaling. // Maybe we need to consider testing scaled subsets without trying to // combine them to match the full scaled image? Or maybe this is the // best we can do? canvas->clear(0); for (uint32_t x = 0; x < divisor; x++) { for (uint32_t y = 0; y < divisor; y++) { // Calculate the subset dimensions uint32_t subsetWidth = width / divisor; uint32_t subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; // Increase the size of the subset in order to have a border on each side const int decodeLeft = left - unscaledBorder; const int decodeTop = top - unscaledBorder; const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false, colorSpace)) { return "Cannot decode region."; } alpha8_to_gray8(&bitmap); canvas->drawBitmapRect(bitmap, SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), SkRect::MakeXYWH((SkScalar) (left / fSampleSize), (SkScalar) (top / fSampleSize), (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), nullptr); } } return ""; } default: SkASSERT(false); return "Error: Should not be reached."; } } SkISize BRDSrc::size() const { std::unique_ptr brd(create_brd(fPath)); if (brd) { return {SkTMax(1, brd->width() / (int)fSampleSize), SkTMax(1, brd->height() / (int)fSampleSize)}; } return {0, 0}; } static SkString get_scaled_name(const Path& path, float scale) { return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); } Name BRDSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static bool serial_from_path_name(const SkString& path) { if (!FLAGS_RAW_threading) { static const char* const exts[] = { "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", }; const char* actualExt = strrchr(path.c_str(), '.'); if (actualExt) { actualExt++; for (auto* ext : exts) { if (0 == strcmp(ext, actualExt)) { return true; } } } } return false; } CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType, float scale) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fScale(scale) , fRunSerially(serial_from_path_name(path)) {} bool CodecSrc::veto(SinkFlags flags) const { // Test to direct raster backends (8888 and 565). return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } // Allows us to test decodes to non-native 8888. static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) { if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) { return; } for (int y = 0; y < bitmap.height(); y++) { uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); SkOpts::RGBA_to_BGRA(row, row, bitmap.width()); } } // FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339. // This allows us to still test unpremultiplied decodes. static void premultiply_if_necessary(SkBitmap& bitmap) { if (kUnpremul_SkAlphaType != bitmap.alphaType()) { return; } switch (bitmap.colorType()) { case kRGBA_F16_SkColorType: { SkJumper_MemoryCtx ctx = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &ctx); p.append(SkRasterPipeline::premul); p.append(SkRasterPipeline::store_f16, &ctx); p.run(0,0, bitmap.width(), bitmap.height()); } break; case kN32_SkColorType: for (int y = 0; y < bitmap.height(); y++) { uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); SkOpts::RGBA_to_rgbA(row, row, bitmap.width()); } break; default: // No need to premultiply kGray or k565 outputs. break; } // In the kIndex_8 case, the canvas won't even try to draw unless we mark the // bitmap as kPremul. bitmap.setAlphaType(kPremul_SkAlphaType); } static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) { switch (dstColorType) { case CodecSrc::kGrayscale_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType) { return false; } *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType); break; case CodecSrc::kNonNative8888_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType || kRGBA_F16_SkColorType == canvasColorType) { return false; } #ifdef SK_PMCOLOR_IS_RGBA *decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType); #else *decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType); #endif break; default: if (kRGB_565_SkColorType == canvasColorType && kOpaque_SkAlphaType != decodeInfo->alphaType()) { return false; } if (kRGBA_F16_SkColorType == canvasColorType) { sk_sp linearSpace = decodeInfo->colorSpace()->makeLinearGamma(); *decodeInfo = decodeInfo->makeColorSpace(std::move(linearSpace)); } *decodeInfo = decodeInfo->makeColorType(canvasColorType); break; } *decodeInfo = decodeInfo->makeAlphaType(dstAlphaType); return true; } static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes, CodecSrc::DstColorType dstColorType, SkScalar left = 0, SkScalar top = 0) { SkBitmap bitmap; bitmap.installPixels(info, pixels, rowBytes); premultiply_if_necessary(bitmap); swap_rb_if_necessary(bitmap, dstColorType); canvas->drawBitmap(bitmap, left, top); } // For codec srcs, we want the "draw" step to be a memcpy. Any interesting color space or // color format conversions should be performed by the codec. Sometimes the output of the // decode will be in an interesting color space. On our srgb and f16 backends, we need to // "pretend" that the color space is standard sRGB to avoid triggering color conversion // at draw time. static void set_bitmap_color_space(SkImageInfo* info) { if (kRGBA_F16_SkColorType == info->colorType()) { *info = info->makeColorSpace(SkColorSpace::MakeSRGBLinear()); } else { *info = info->makeColorSpace(SkColorSpace::MakeSRGB()); } } Error CodecSrc::draw(SkCanvas* canvas) const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec.get()) { return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo(); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, fDstAlphaType)) { return Error::Nonfatal("Skipping uninteresting test."); } // Try to scale the image if it is desired SkISize size = codec->getScaledDimensions(fScale); if (size == decodeInfo.dimensions() && 1.0f != fScale) { return Error::Nonfatal("Test without scaling is uninteresting."); } // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); const int bpp = decodeInfo.bytesPerPixel(); const size_t rowBytes = size.width() * bpp; const size_t safeSize = decodeInfo.computeByteSize(rowBytes); SkAutoMalloc pixels(safeSize); SkCodec::Options options; options.fPremulBehavior = canvas->imageInfo().colorSpace() ? SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; if (kCodecZeroInit_Mode == fMode) { memset(pixels.get(), 0, size.height() * rowBytes); options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; } SkImageInfo bitmapInfo = decodeInfo; set_bitmap_color_space(&bitmapInfo); if (kRGBA_8888_SkColorType == decodeInfo.colorType() || kBGRA_8888_SkColorType == decodeInfo.colorType()) { bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); } switch (fMode) { case kAnimated_Mode: { std::vector frameInfos = codec->getFrameInfo(); if (frameInfos.size() <= 1) { return SkStringPrintf("%s is not an animated image.", fPath.c_str()); } // As in CodecSrc::size(), compute a roughly square grid to draw the frames // into. "factor" is the number of frames to draw on one row. There will be // up to "factor" rows as well. const float root = sqrt((float) frameInfos.size()); const int factor = sk_float_ceil2int(root); // Used to cache a frame that future frames will depend on. SkAutoMalloc priorFramePixels; int cachedFrame = SkCodec::kNone; for (int i = 0; static_cast(i) < frameInfos.size(); i++) { options.fFrameIndex = i; // Check for a prior frame const int reqFrame = frameInfos[i].fRequiredFrame; if (reqFrame != SkCodec::kNone && reqFrame == cachedFrame && priorFramePixels.get()) { // Copy into pixels memcpy(pixels.get(), priorFramePixels.get(), safeSize); options.fPriorFrame = reqFrame; } else { options.fPriorFrame = SkCodec::kNone; } SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options); if (SkCodec::kInvalidInput == result && i > 0) { // Some of our test images have truncated later frames. Treat that // the same as incomplete. result = SkCodec::kIncompleteInput; } switch (result) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: { // If the next frame depends on this one, store it in priorFrame. // It is possible that we may discard a frame that future frames depend on, // but the codec will simply redecode the discarded frame. // Do this before calling draw_to_canvas, which premultiplies in place. If // we're decoding to unpremul, we want to pass the unmodified frame to the // codec for decoding the next frame. if (static_cast(i+1) < frameInfos.size() && frameInfos[i+1].fRequiredFrame == i) { memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize); cachedFrame = i; } SkAutoCanvasRestore acr(canvas, true); const int xTranslate = (i % factor) * decodeInfo.width(); const int yTranslate = (i / factor) * decodeInfo.height(); canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate)); draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); if (result != SkCodec::kSuccess) { return ""; } break; } case SkCodec::kInvalidConversion: if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) { return Error::Nonfatal(SkStringPrintf( "Cannot decode frame %i to 565 (%s).", i, fPath.c_str())); } // Fall through. default: return SkStringPrintf("Couldn't getPixels for frame %i in %s.", i, fPath.c_str()); } } break; } case kCodecZeroInit_Mode: case kCodec_Mode: { switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { case SkCodec::kSuccess: // We consider these to be valid, since we should still decode what is // available. case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: // Everything else is considered a failure. return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); break; } case kScanline_Mode: { void* dst = pixels.get(); uint32_t height = decodeInfo.height(); const bool useIncremental = [this]() { auto exts = { "png", "PNG", "gif", "GIF" }; for (auto ext : exts) { if (fPath.endsWith(ext)) { return true; } } return false; }(); // ico may use the old scanline method or the new one, depending on whether it // internally holds a bmp or a png. const bool ico = fPath.endsWith("ico"); bool useOldScanlineMethod = !useIncremental && !ico; if (useIncremental || ico) { if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst, rowBytes, &options)) { int rowsDecoded; auto result = codec->incrementalDecode(&rowsDecoded); if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) { codec->fillIncompleteImage(decodeInfo, dst, rowBytes, SkCodec::kNo_ZeroInitialized, height, rowsDecoded); } } else { if (useIncremental) { // Error: These should support incremental decode. return "Could not start incremental decode"; } // Otherwise, this is an ICO. Since incremental failed, it must contain a BMP, // which should work via startScanlineDecode useOldScanlineMethod = true; } } if (useOldScanlineMethod) { if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) { return "Could not start scanline decoder"; } switch (codec->getScanlineOrder()) { case SkCodec::kTopDown_SkScanlineOrder: case SkCodec::kBottomUp_SkScanlineOrder: // We do not need to check the return value. On an incomplete // image, memory will be filled with a default value. codec->getScanlines(dst, height, rowBytes); break; } } draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); break; } case kStripe_Mode: { const int height = decodeInfo.height(); // This value is chosen arbitrarily. We exercise more cases by choosing a value that // does not align with image blocks. const int stripeHeight = 37; const int numStripes = (height + stripeHeight - 1) / stripeHeight; void* dst = pixels.get(); // Decode odd stripes if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { return "Could not start scanline decoder"; } // This mode was designed to test the new skip scanlines API in libjpeg-turbo. // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting // to run this test for image types that do not have this scanline ordering. // We only run this on Jpeg, which is always kTopDown. SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()); for (int i = 0; i < numStripes; i += 2) { // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); codec->skipScanlines(linesToSkip); // Read a stripe const int startY = (i + 1) * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); if (linesToRead > 0) { codec->getScanlines(SkTAddOffset(dst, rowBytes * startY), linesToRead, rowBytes); } } // Decode even stripes const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo); if (SkCodec::kSuccess != startResult) { return "Failed to restart scanline decoder with same parameters."; } for (int i = 0; i < numStripes; i += 2) { // Read a stripe const int startY = i * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); codec->getScanlines(SkTAddOffset(dst, rowBytes * startY), linesToRead, rowBytes); // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); if (linesToSkip > 0) { codec->skipScanlines(linesToSkip); } } draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); break; } case kCroppedScanline_Mode: { const int width = decodeInfo.width(); const int height = decodeInfo.height(); // This value is chosen because, as we move across the image, it will sometimes // align with the jpeg block sizes and it will sometimes not. This allows us // to test interestingly different code paths in the implementation. const int tileSize = 36; SkIRect subset; for (int x = 0; x < width; x += tileSize) { subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height); options.fSubset = ⊂ if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { return "Could not start scanline decoder."; } codec->getScanlines(SkTAddOffset(pixels.get(), x * bpp), height, rowBytes); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); break; } case kSubset_Mode: { // Arbitrarily choose a divisor. int divisor = 2; // Total width/height of the image. const int W = codec->getInfo().width(); const int H = codec->getInfo().height(); if (divisor > W || divisor > H) { return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big " "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), W, H)); } // subset dimensions // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. const int w = SkAlign2(W / divisor); const int h = SkAlign2(H / divisor); SkIRect subset; options.fSubset = ⊂ SkBitmap subsetBm; // We will reuse pixel memory from bitmap. void* dst = pixels.get(); // Keep track of left and top (for drawing subsetBm into canvas). We could use // fScale * x and fScale * y, but we want integers such that the next subset will start // where the last one ended. So we'll add decodeInfo.width() and height(). int left = 0; for (int x = 0; x < W; x += w) { int top = 0; for (int y = 0; y < H; y+= h) { // Do not make the subset go off the edge of the image. const int preScaleW = SkTMin(w, W - x); const int preScaleH = SkTMin(h, H - y); subset.setXYWH(x, y, preScaleW, preScaleH); // And scale // FIXME: Should we have a version of getScaledDimensions that takes a subset // into account? const int scaledW = SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)); const int scaledH = SkTMax(1, SkScalarRoundToInt(preScaleH * fScale)); decodeInfo = decodeInfo.makeWH(scaledW, scaledH); SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH); size_t subsetRowBytes = subsetBitmapInfo.minRowBytes(); const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes, &options); switch (result) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) " "from %s with dimensions (%d x %d)\t error %d", x, y, decodeInfo.width(), decodeInfo.height(), fPath.c_str(), W, H, result); } draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType, SkIntToScalar(left), SkIntToScalar(top)); // translate by the scaled height. top += decodeInfo.height(); } // translate by the scaled width. left += decodeInfo.width(); } return ""; } default: SkASSERT(false); return "Invalid fMode"; } return ""; } SkISize CodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } auto imageSize = codec->getScaledDimensions(fScale); if (fMode == kAnimated_Mode) { // We'll draw one of each frame, so make it big enough to hold them all // in a grid. The grid will be roughly square, with "factor" frames per // row and up to "factor" rows. const size_t count = codec->getFrameInfo().size(); const float root = sqrt((float) count); const int factor = sk_float_ceil2int(root); imageSize.fWidth = imageSize.fWidth * factor; imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor); } return imageSize; } Name CodecSrc::name() const { if (1.0f == fScale) { Name name = SkOSPath::Basename(fPath.c_str()); if (fMode == kAnimated_Mode) { name.append("_animated"); } return name; } SkASSERT(fMode != kAnimated_Mode); return get_scaled_name(fPath, fScale); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType, int sampleSize) : fPath(path) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fSampleSize(sampleSize) , fRunSerially(serial_from_path_name(path)) {} bool AndroidCodecSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Error AndroidCodecSrc::draw(SkCanvas* canvas) const { if (canvas->imageInfo().colorSpace() && kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) { // SkAndroidCodec uses legacy premultiplication and blending. Therefore, we only // run these tests on legacy canvases. // We allow an exception for F16, since Android uses F16. return Error::Nonfatal("Skip testing to color correct canvas."); } sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkAndroidCodec::MakeFromData(encoded)); if (nullptr == codec) { return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo(); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, fDstAlphaType)) { return Error::Nonfatal("Skipping uninteresting test."); } // Scale the image if it is desired. SkISize size = codec->getSampledDimensions(fSampleSize); // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); int bpp = decodeInfo.bytesPerPixel(); size_t rowBytes = size.width() * bpp; SkAutoMalloc pixels(size.height() * rowBytes); SkBitmap bitmap; SkImageInfo bitmapInfo = decodeInfo; set_bitmap_color_space(&bitmapInfo); if (kRGBA_8888_SkColorType == decodeInfo.colorType() || kBGRA_8888_SkColorType == decodeInfo.colorType()) { bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); } // Create options for the codec. SkAndroidCodec::AndroidOptions options; options.fSampleSize = fSampleSize; switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); return ""; } SkISize AndroidCodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkAndroidCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return codec->getSampledDimensions(fSampleSize); } Name AndroidCodecSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu) : fPath(path) , fMode(mode) , fDstAlphaType(alphaType) , fIsGpu(isGpu) , fRunSerially(serial_from_path_name(path)) {} bool ImageGenSrc::veto(SinkFlags flags) const { if (fIsGpu) { // MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs. return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect || flags.multisampled == SinkFlags::kMultisampled; } return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Error ImageGenSrc::draw(SkCanvas* canvas) const { if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { return Error::Nonfatal("Uninteresting to test image generator to 565."); } sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } #if defined(SK_BUILD_FOR_WIN) // Initialize COM in order to test with WIC. SkAutoCoInitialize com; if (!com.succeeded()) { return "Could not initialize COM."; } #endif std::unique_ptr gen(nullptr); switch (fMode) { case kCodec_Mode: gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded); if (!gen) { return "Could not create codec image generator."; } break; case kPlatform_Mode: { #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) gen = SkImageGeneratorCG::MakeFromEncodedCG(encoded); #elif defined(SK_BUILD_FOR_WIN) gen.reset(SkImageGeneratorWIC::NewFromEncodedWIC(encoded.get())); #endif if (!gen) { return "Could not create platform image generator."; } break; } default: SkASSERT(false); return "Invalid image generator mode"; } // Test deferred decoding path on GPU if (fIsGpu) { sk_sp image(SkImage::MakeFromGenerator(std::move(gen), nullptr)); if (!image) { return "Could not create image from codec image generator."; } canvas->drawImage(image, 0, 0); return ""; } // Test various color and alpha types on CPU SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType); SkImageGenerator::Options options; options.fBehavior = canvas->imageInfo().colorSpace() ? SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; int bpp = decodeInfo.bytesPerPixel(); size_t rowBytes = decodeInfo.width() * bpp; SkAutoMalloc pixels(decodeInfo.height() * rowBytes); if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { SkString err = SkStringPrintf("Image generator could not getPixels() for %s\n", fPath.c_str()); #if defined(SK_BUILD_FOR_WIN) if (kPlatform_Mode == fMode) { // Do not issue a fatal error for WIC flakiness. return Error::Nonfatal(err); } #endif return err; } set_bitmap_color_space(&decodeInfo); draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, CodecSrc::kGetFromCanvas_DstColorType); return ""; } SkISize ImageGenSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return codec->getInfo().dimensions(); } Name ImageGenSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ColorCodecSrc::ColorCodecSrc(Path path, Mode mode, SkColorType colorType) : fPath(path) , fMode(mode) , fColorType(colorType) {} bool ColorCodecSrc::veto(SinkFlags flags) const { // Test to direct raster backends (8888 and 565). return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } void clamp_if_necessary(const SkBitmap& bitmap, SkColorType dstCT) { if (kRGBA_F16_SkColorType != bitmap.colorType() || kRGBA_F16_SkColorType == dstCT) { // No need to clamp if the dst is F16. We will clamp when we encode to PNG. return; } SkJumper_MemoryCtx ptr = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &ptr); p.append(SkRasterPipeline::clamp_0); if (kPremul_SkAlphaType == bitmap.alphaType()) { p.append(SkRasterPipeline::clamp_a); } else { p.append(SkRasterPipeline::clamp_1); } p.append(SkRasterPipeline::store_f16, &ptr); p.run(0,0, bitmap.width(), bitmap.height()); } Error ColorCodecSrc::draw(SkCanvas* canvas) const { if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { return Error::Nonfatal("No need to test color correction to 565 backend."); } bool runInLegacyMode = kBaseline_Mode == fMode; if (runInLegacyMode && canvas->imageInfo().colorSpace()) { return Error::Nonfatal("Skipping tests that are only interesting in legacy mode."); } else if (!runInLegacyMode && !canvas->imageInfo().colorSpace()) { return Error::Nonfatal("Skipping tests that are only interesting in srgb mode."); } sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); } // Load the dst ICC profile. This particular dst is fairly similar to Adobe RGB. sk_sp dstData = GetResourceAsData("icc_profiles/HP_ZR30w.icc"); if (!dstData) { return "Cannot read monitor profile. Is the resource path set correctly?"; } sk_sp dstSpace = nullptr; if (kDst_sRGB_Mode == fMode) { dstSpace = SkColorSpace::MakeSRGB(); } else if (kDst_HPZR30w_Mode == fMode) { dstSpace = SkColorSpace::MakeICC(dstData->data(), dstData->size()); } SkImageInfo decodeInfo = codec->getInfo().makeColorType(fColorType).makeColorSpace(dstSpace); if (kUnpremul_SkAlphaType == decodeInfo.alphaType()) { decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType); } if (kRGBA_F16_SkColorType == fColorType) { decodeInfo = decodeInfo.makeColorSpace(decodeInfo.colorSpace()->makeLinearGamma()); } SkImageInfo bitmapInfo = decodeInfo; set_bitmap_color_space(&bitmapInfo); if (kRGBA_8888_SkColorType == decodeInfo.colorType() || kBGRA_8888_SkColorType == decodeInfo.colorType()) { bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); } SkBitmap bitmap; if (!bitmap.tryAllocPixels(bitmapInfo)) { return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(), bitmapInfo.width(), bitmapInfo.height()); } size_t rowBytes = bitmap.rowBytes(); SkCodec::Result r = codec->getPixels(decodeInfo, bitmap.getPixels(), rowBytes); switch (r) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("Couldn't getPixels %s. Error code %d", fPath.c_str(), r); } switch (fMode) { case kBaseline_Mode: case kDst_sRGB_Mode: case kDst_HPZR30w_Mode: // We do not support drawing unclamped F16. clamp_if_necessary(bitmap, canvas->imageInfo().colorType()); canvas->drawBitmap(bitmap, 0, 0); break; default: SkASSERT(false); return "Invalid fMode"; } return ""; } SkISize ColorCodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return {codec->getInfo().width(), codec->getInfo().height()}; } Name ColorCodecSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const SkRect kSKPViewport = {0, 0, 1000, 1000}; SKPSrc::SKPSrc(Path path) : fPath(path) { } static sk_sp read_skp(const char* path, const SkDeserialProcs* procs = nullptr) { std::unique_ptr stream = SkStream::MakeFromFile(path); if (!stream) { return nullptr; } sk_sp pic(SkPicture::MakeFromStream(stream.get(), procs)); if (!pic) { return nullptr; } stream = nullptr; // Might as well drop this when we're done with it. return pic; } Error SKPSrc::draw(SkCanvas* canvas) const { sk_sp pic = read_skp(fPath.c_str()); if (!pic) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } canvas->clipRect(kSKPViewport); canvas->drawPicture(pic); return ""; } static SkRect get_cull_rect_for_skp(const char* path) { std::unique_ptr stream = SkStream::MakeFromFile(path); if (!stream) { return SkRect::MakeEmpty(); } SkPictInfo info; if (!SkPicture_StreamIsSKP(stream.get(), &info)) { return SkRect::MakeEmpty(); } return info.fCullRect; } SkISize SKPSrc::size() const { SkRect viewport = get_cull_rect_for_skp(fPath.c_str()); if (!viewport.intersect(kSKPViewport)) { return {0, 0}; } return viewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const int kDDLViewportSize = 2048; static const SkRect kDDLSKPViewport = { 0, 0, kDDLViewportSize, kDDLViewportSize }; DDLSKPSrc::DDLSKPSrc(Path path) : fPath(path) { } SkISize DDLSKPSrc::size() const { SkRect viewport = get_cull_rect_for_skp(fPath.c_str()); if (!viewport.intersect(kDDLSKPViewport)) { return {0, 0}; } return viewport.roundOut().size(); } Name DDLSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } #if !SK_SUPPORT_GPU Error DDLSKPSrc::draw(SkCanvas* canvas) const { return SkStringPrintf("DDLs are GPU only\n"); } #else class PromiseImageInfo { public: int fIndex; sk_sp fImage; SkBitmap fBitmap; GrBackendTexture fBackendTexture; }; static void promise_image_fulfill_proc(void* textureContext, GrBackendTexture* outTexture) { const PromiseImageInfo* imgInfo = static_cast(textureContext); *outTexture = imgInfo->fBackendTexture; } static void promise_image_release_proc(void* textureContext) { // Do nothing. We free all the backend textures at the end. } static void promise_image_done_proc(void* textureContext) { // Do nothing. } class PromiseImageCallbackContext { public: const SkTArray* fImageInfo; SkDeferredDisplayListRecorder* fRecorder; }; // This generates promise images to replace the indices in the compressed picture. This // reconstitution is performed separately in each thread so we end of with multiple // promise image referring to the same GrBackendTexture. static sk_sp promise_image_creator(const void* rawData, size_t length, void* ctxIn) { PromiseImageCallbackContext* ctx = static_cast(ctxIn); const SkTArray* imageInfo = ctx->fImageInfo; SkDeferredDisplayListRecorder* recorder = ctx->fRecorder; SkASSERT(length == sizeof(int)); const int* indexPtr = static_cast(rawData); SkASSERT(*indexPtr < imageInfo->count()); const PromiseImageInfo& curImage = (*imageInfo)[*indexPtr]; SkASSERT(curImage.fIndex == *indexPtr); GrBackendFormat backendFormat = curImage.fBackendTexture.format(); // DDL TODO: sort out mipmapping sk_sp image = recorder->makePromiseTexture(backendFormat, curImage.fBitmap.width(), curImage.fBitmap.height(), GrMipMapped::kNo, GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, curImage.fBitmap.colorType(), curImage.fBitmap.alphaType(), curImage.fBitmap.refColorSpace(), promise_image_fulfill_proc, promise_image_release_proc, promise_image_done_proc, (void*) &curImage); SkASSERT(image); return image; }; // DDL TODO: it would be great if we could draw the DDL directly into the destination SkSurface Error DDLSKPSrc::draw(SkCanvas* canvas) const { GrContext* context = canvas->getGrContext(); if (!context) { return SkStringPrintf("DDLs are GPU only\n"); } if (1 == FLAGS_ddl) { // If the number of x & y tiles is one just perform normal (non-DDL) rendering for // comparison purposes sk_sp picture = read_skp(fPath.c_str()); if (!picture) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } canvas->clipRect(kDDLSKPViewport); canvas->drawPicture(std::move(picture)); return ""; } class TileData { public: // Note: we could just pass in surface characterization TileData(sk_sp surf, const SkIRect& clip) : fSurface(std::move(surf)) , fClip(clip) { SkAssertResult(fSurface->characterize(&fCharacterization)); } // This method operates in parallel // In each thread we will reconvert the compressedPictureData into an SkPicture // replacing each image-index with a promise image. void preprocess(SkData* compressedPictureData, const SkTArray* imageInfo) { SkDeferredDisplayListRecorder recorder(fCharacterization); // DDL TODO: the DDLRecorder's GrContext isn't initialized until getCanvas is called. // Maybe set it up in the ctor? SkCanvas* subCanvas = recorder.getCanvas(); sk_sp reconstitutedPicture; { PromiseImageCallbackContext callbackCtx = { imageInfo, &recorder }; SkDeserialProcs procs; procs.fImageCtx = &callbackCtx; procs.fImageProc = promise_image_creator; reconstitutedPicture = SkPicture::MakeFromData(compressedPictureData, &procs); if (!reconstitutedPicture) { return; } } subCanvas->clipRect(SkRect::MakeWH(fClip.width(), fClip.height())); subCanvas->translate(-fClip.fLeft, -fClip.fTop); // Note: in this use case we only render a picture to the deferred canvas // but, more generally, clients will use arbitrary draw calls. subCanvas->drawPicture(reconstitutedPicture); fDisplayList = recorder.detach(); } // This method operates serially void draw() { fSurface->draw(fDisplayList.get()); } // This method also operates serially void compose(SkCanvas* dst) { sk_sp img = fSurface->makeImageSnapshot(); dst->save(); dst->clipRect(SkRect::Make(fClip)); dst->drawImage(std::move(img), fClip.fLeft, fClip.fTop); dst->restore(); } private: sk_sp fSurface; SkIRect fClip; // in the device space of the destination canvas std::unique_ptr fDisplayList; SkSurfaceCharacterization fCharacterization; }; SkTArray tileData; tileData.reserve(16); SkTArray imageInfo; sk_sp compressedPictureData; SkIRect viewport; // this is our ultimate final drawing area/rect // DDL TODO: should we also be deduping in the following preprocessing? // Massage the input picture into something we can use with DDL { // In the first pass we read in an .skp file into an SkPicture recording all the images // and getting a copy of their pixels in an uploadable form. sk_sp firstPassPicture; { SkDeserialProcs procs; procs.fImageCtx = &imageInfo; procs.fImageProc = [](const void* rawData, size_t length, void* ctx) -> sk_sp { auto imageInfo = static_cast*>(ctx); sk_sp data = SkData::MakeWithCopy(rawData, length); PromiseImageInfo newImageInfo; newImageInfo.fIndex = imageInfo->count(); newImageInfo.fImage = SkImage::MakeFromEncoded(std::move(data)); SkAssertResult(newImageInfo.fImage->asLegacyBitmap(&newImageInfo.fBitmap)); imageInfo->push_back(newImageInfo); return newImageInfo.fImage; }; firstPassPicture = read_skp(fPath.c_str(), &procs); if (!firstPassPicture) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkRect pictureCullRect = firstPassPicture->cullRect(); SkAssertResult(pictureCullRect.intersect(kDDLSKPViewport)); viewport = pictureCullRect.roundOut(); } // In the second pass we convert the SkPicture into SkData replacing all the SkImages // with an index into the imageInfo we collected in the first pass. { SkSerialProcs procs; procs.fImageCtx = &imageInfo; procs.fImageProc = [](SkImage* image, void* ctx) -> sk_sp { auto imageInfo = static_cast*>(ctx); int i; for (i = 0; i < imageInfo->count(); ++i) { if ((*imageInfo)[i].fImage.get() == image) { break; } } SkASSERT(i < imageInfo->count()); return SkData::MakeWithCopy(&i, sizeof(i)); }; compressedPictureData = firstPassPicture->serialize(&procs); if (!compressedPictureData) { return SkStringPrintf("Couldn't re-serialize %s.", fPath.c_str()); } } // In the third pass we go through all the images and upload them to the GPU and // get rid of the SkImage from the first pass { GrGpu* gpu = context->contextPriv().getGpu(); if (!gpu) { return SkStringPrintf("Couldn't get GPU from GrContext\n"); } for (int i = 0; i < imageInfo.count(); ++i) { // DDL TODO: how can we tell if we need mipmapping! imageInfo[i].fBackendTexture = gpu->createTestingOnlyBackendTexture( imageInfo[i].fBitmap.getPixels(), imageInfo[i].fBitmap.width(), imageInfo[i].fBitmap.height(), imageInfo[i].fBitmap.colorType(), false, GrMipMapped::kNo); SkAssertResult(imageInfo[i].fBackendTexture.isValid()); imageInfo[i].fImage = nullptr; // we don't need this anymore } } } int xTileSize = viewport.width()/FLAGS_ddl; int yTileSize = viewport.height()/FLAGS_ddl; // First, create the destination tiles for (int y = 0, yOff = 0; y < FLAGS_ddl; ++y, yOff += yTileSize) { int ySize = (y < FLAGS_ddl-1) ? yTileSize : viewport.height()-yOff; for (int x = 0, xOff = 0; x < FLAGS_ddl; ++x, xOff += xTileSize) { int xSize = (x < FLAGS_ddl-1) ? xTileSize : viewport.width()-xOff; SkIRect clip = SkIRect::MakeXYWH(xOff, yOff, xSize, ySize); SkASSERT(viewport.contains(clip)); SkImageInfo tileII = SkImageInfo::MakeN32Premul(xSize, ySize); tileData.push_back(TileData(canvas->makeSurface(tileII), clip)); } } // Second, run the cpu pre-processing in threads SkTaskGroup().batch(tileData.count(), [&](int i) { tileData[i].preprocess(compressedPictureData.get(), &imageInfo); }); // Third, synchronously render the display lists into the dest tiles // TODO: it would be cool to not wait until all the tiles are drawn to begin // drawing to the GPU for (int i = 0; i < tileData.count(); ++i) { tileData[i].draw(); } // Finally, compose the drawn tiles into the result // Note: the separation between the tiles and the final composition better // matches Chrome but costs us a copy for (int i = 0; i < tileData.count(); ++i) { tileData[i].compose(canvas); } // All promise images need to be fulfulled before leaving this method since we are about to // delete their backing GrBackendTextures context->flush(); // Clean up VRAM { GrGpu* gpu = context->contextPriv().getGpu(); if (!gpu) { return SkStringPrintf("Couldn't get GPU from GrContext\n"); } for (int i = 0; i < imageInfo.count(); ++i) { gpu->deleteTestingOnlyBackendTexture(imageInfo[i].fBackendTexture); } } return ""; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if !defined(SK_BUILD_FOR_GOOGLE3) SkottieSrc::SkottieSrc(Path path) : fName(SkOSPath::Basename(path.c_str())) { fAnimation = skottie::Animation::MakeFromFile(path.c_str()); if (!fAnimation) { return; } // Fit kTileCount x kTileCount frames to a 1000x1000 film strip. static constexpr SkScalar kTargetSize = 1000; fTileSize = SkSize::Make(kTargetSize / kTileCount, kTargetSize / kTileCount).toCeil(); } Error SkottieSrc::draw(SkCanvas* canvas) const { if (!fAnimation) { return SkStringPrintf("Unable to parse file: %s", fName.c_str()); } canvas->drawColor(SK_ColorWHITE); const auto ip = fAnimation->inPoint() * 1000 / fAnimation->frameRate(), op = fAnimation->outPoint() * 1000 / fAnimation->frameRate(), fr = (op - ip) / (kTileCount * kTileCount - 1); // Shuffled order to exercise non-linear frame progression. static constexpr int frames[] = { 4, 0, 3, 1, 2 }; static_assert(SK_ARRAY_COUNT(frames) == kTileCount, ""); for (int i = 0; i < kTileCount; ++i) { const SkScalar y = frames[i] * fTileSize.height(); for (int j = 0; j < kTileCount; ++j) { const SkScalar x = frames[j] * fTileSize.width(); SkRect dest = SkRect::MakeXYWH(x, y, fTileSize.width(), fTileSize.height()); const auto t = fr * (frames[i] * kTileCount + frames[j]); { SkAutoCanvasRestore acr(canvas, true); canvas->clipRect(dest, true); canvas->concat(SkMatrix::MakeRectToRect(SkRect::MakeSize(fAnimation->size()), dest, SkMatrix::kCenter_ScaleToFit)); fAnimation->animationTick(t); fAnimation->render(canvas); } } } return ""; } SkISize SkottieSrc::size() const { return SkISize::Make(kTileCount * fTileSize.width(), kTileCount * fTileSize.height()); } Name SkottieSrc::name() const { return fName; } bool SkottieSrc::veto(SinkFlags flags) const { // No need to test to non-(raster||gpu||vector) or indirect backends. bool type_ok = flags.type == SinkFlags::kRaster || flags.type == SinkFlags::kGPU || flags.type == SinkFlags::kVector; return !type_ok || flags.approach != SinkFlags::kDirect; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if defined(SK_XML) // Used when the image doesn't have an intrinsic size. static const SkSize kDefaultSVGSize = {1000, 1000}; // Used to force-scale tiny fixed-size images. static const SkSize kMinimumSVGSize = {128, 128}; SVGSrc::SVGSrc(Path path) : fName(SkOSPath::Basename(path.c_str())) , fScale(1) { SkFILEStream stream(path.c_str()); if (!stream.isValid()) { return; } fDom = SkSVGDOM::MakeFromStream(stream); if (!fDom) { return; } const SkSize& sz = fDom->containerSize(); if (sz.isEmpty()) { // no intrinsic size fDom->setContainerSize(kDefaultSVGSize); } else { fScale = SkTMax(1.f, SkTMax(kMinimumSVGSize.width() / sz.width(), kMinimumSVGSize.height() / sz.height())); } } Error SVGSrc::draw(SkCanvas* canvas) const { if (!fDom) { return SkStringPrintf("Unable to parse file: %s", fName.c_str()); } SkAutoCanvasRestore acr(canvas, true); canvas->scale(fScale, fScale); fDom->render(canvas); return ""; } SkISize SVGSrc::size() const { if (!fDom) { return {0, 0}; } return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale} .toRound(); } Name SVGSrc::name() const { return fName; } bool SVGSrc::veto(SinkFlags flags) const { // No need to test to non-(raster||gpu||vector) or indirect backends. bool type_ok = flags.type == SinkFlags::kRaster || flags.type == SinkFlags::kGPU || flags.type == SinkFlags::kVector; return !type_ok || flags.approach != SinkFlags::kDirect; } #endif // defined(SK_XML) /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ MSKPSrc::MSKPSrc(Path path) : fPath(path) { std::unique_ptr stream = SkStream::MakeFromFile(fPath.c_str()); int count = SkMultiPictureDocumentReadPageCount(stream.get()); if (count > 0) { fPages.reset(count); (void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count()); } } int MSKPSrc::pageCount() const { return fPages.count(); } SkISize MSKPSrc::size() const { return this->size(0); } SkISize MSKPSrc::size(int i) const { return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0}; } Error MSKPSrc::draw(SkCanvas* c) const { return this->draw(0, c); } Error MSKPSrc::draw(int i, SkCanvas* canvas) const { if (this->pageCount() == 0) { return SkStringPrintf("Unable to parse MultiPictureDocument file: %s", fPath.c_str()); } if (i >= fPages.count() || i < 0) { return SkStringPrintf("MultiPictureDocument page number out of range: %d", i); } SkPicture* page = fPages[i].fPicture.get(); if (!page) { std::unique_ptr stream = SkStream::MakeFromFile(fPath.c_str()); if (!stream) { return SkStringPrintf("Unable to open file: %s", fPath.c_str()); } if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) { return SkStringPrintf("SkMultiPictureDocument reader failed on page %d: %s", i, fPath.c_str()); } page = fPages[i].fPicture.get(); } canvas->drawPicture(page); return ""; } Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { return src.draw(SkMakeNullCanvas().get()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static bool encode_png_base64(const SkBitmap& bitmap, SkString* dst) { SkPixmap pm; if (!bitmap.peekPixels(&pm)) { dst->set("peekPixels failed"); return false; } // We're going to embed this PNG in a data URI, so make it as small as possible SkPngEncoder::Options options; options.fFilterFlags = SkPngEncoder::FilterFlag::kAll; options.fZLibLevel = 9; options.fUnpremulBehavior = pm.colorSpace() ? SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; SkDynamicMemoryWStream wStream; if (!SkPngEncoder::Encode(&wStream, pm, options)) { dst->set("SkPngEncoder::Encode failed"); return false; } sk_sp pngData = wStream.detachAsData(); size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr); // The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs. // Infra says these can be pretty big, as long as we're only outputting them on failure. static const size_t kMaxBase64Length = 1024 * 1024; if (len > kMaxBase64Length) { dst->printf("Encoded image too large (%u bytes)", static_cast(len)); return false; } dst->resize(len); SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str()); return true; } static Error compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) { // The dimensions are a property of the Src only, and so should be identical. SkASSERT(reference.computeByteSize() == bitmap.computeByteSize()); if (reference.computeByteSize() != bitmap.computeByteSize()) { return "Dimensions don't match reference"; } // All SkBitmaps in DM are tight, so this comparison is easy. if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.computeByteSize())) { SkString encoded; SkString errString("Pixels don't match reference"); if (encode_png_base64(reference, &encoded)) { errString.append("\nExpected: data:image/png;base64,"); errString.append(encoded); } else { errString.append("\nExpected image failed to encode: "); errString.append(encoded); } if (encode_png_base64(bitmap, &encoded)) { errString.append("\nActual: data:image/png;base64,"); errString.append(encoded); } else { errString.append("\nActual image failed to encode: "); errString.append(encoded); } return errString; } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); GPUSink::GPUSink(GrContextFactory::ContextType ct, GrContextFactory::ContextOverrides overrides, SkCommandLineConfigGpu::SurfType surfType, int samples, bool diText, SkColorType colorType, SkAlphaType alphaType, sk_sp colorSpace, bool threaded, const GrContextOptions& grCtxOptions) : fContextType(ct) , fContextOverrides(overrides) , fSurfType(surfType) , fSampleCount(samples) , fUseDIText(diText) , fColorType(colorType) , fAlphaType(alphaType) , fColorSpace(std::move(colorSpace)) , fThreaded(threaded) , fBaseContextOptions(grCtxOptions) {} DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing."); Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const { return this->onDraw(src, dst, dstStream, log, fBaseContextOptions); } Error GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log, const GrContextOptions& baseOptions) const { GrContextOptions grOptions = baseOptions; src.modifyGrContextOptions(&grOptions); GrContextFactory factory(grOptions); const SkISize size = src.size(); SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), fColorType, fAlphaType, fColorSpace); sk_sp surface; #if SK_SUPPORT_GPU GrContext* context = factory.getContextInfo(fContextType, fContextOverrides).grContext(); const int maxDimension = context->caps()->maxTextureSize(); if (maxDimension < SkTMax(size.width(), size.height())) { return Error::Nonfatal("Src too large to create a texture.\n"); } uint32_t flags = fUseDIText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0; SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); GrBackendTexture backendTexture; GrBackendRenderTarget backendRT; switch (fSurfType) { case SkCommandLineConfigGpu::SurfType::kDefault: surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, fSampleCount, &props); break; case SkCommandLineConfigGpu::SurfType::kBackendTexture: backendTexture = context->contextPriv().getGpu()->createTestingOnlyBackendTexture( nullptr, info.width(), info.height(), info.colorType(), true, GrMipMapped::kNo); surface = SkSurface::MakeFromBackendTexture(context, backendTexture, kTopLeft_GrSurfaceOrigin, fSampleCount, fColorType, info.refColorSpace(), &props); break; case SkCommandLineConfigGpu::SurfType::kBackendRenderTarget: if (1 == fSampleCount) { auto srgbEncoded = info.colorSpace() && info.colorSpace()->gammaCloseToSRGB() ? GrSRGBEncoded::kYes : GrSRGBEncoded::kNo; auto colorType = SkColorTypeToGrColorType(info.colorType()); backendRT = context->contextPriv().getGpu()->createTestingOnlyBackendRenderTarget( info.width(), info.height(), colorType, srgbEncoded); surface = SkSurface::MakeFromBackendRenderTarget(context, backendRT, kBottomLeft_GrSurfaceOrigin, info.refColorSpace(), &props); } break; } #endif if (!surface) { return "Could not create a surface."; } if (FLAGS_preAbandonGpuContext) { factory.abandonContexts(); } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); if (FLAGS_gpuStats) { #if SK_SUPPORT_GPU canvas->getGrContext()->contextPriv().dumpCacheStats(log); canvas->getGrContext()->contextPriv().dumpGpuStats(log); #endif } if (info.colorType() == kRGB_565_SkColorType || info.colorType() == kARGB_4444_SkColorType) { // We don't currently support readbacks into these formats on the GPU backend. Convert to // 32 bit. info = SkImageInfo::Make(size.width(), size.height(), kRGBA_8888_SkColorType, kPremul_SkAlphaType, fColorSpace); } dst->allocPixels(info); canvas->readPixels(*dst, 0, 0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } else if (FLAGS_releaseAndAbandonGpuContext) { factory.releaseResourcesAndAbandonContexts(); } #if SK_SUPPORT_GPU if (!context->contextPriv().abandoned()) { surface.reset(); if (backendTexture.isValid()) { context->contextPriv().getGpu()->deleteTestingOnlyBackendTexture(backendTexture); } if (backendRT.isValid()) { context->contextPriv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT); } } #endif return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUThreadTestingSink::GPUThreadTestingSink(GrContextFactory::ContextType ct, GrContextFactory::ContextOverrides overrides, SkCommandLineConfigGpu::SurfType surfType, int samples, bool diText, SkColorType colorType, SkAlphaType alphaType, sk_sp colorSpace, bool threaded, const GrContextOptions& grCtxOptions) : INHERITED(ct, overrides, surfType, samples, diText, colorType, alphaType, std::move(colorSpace), threaded, grCtxOptions) #if SK_SUPPORT_GPU , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) { #else , fExecutor(nullptr) { #endif SkASSERT(fExecutor); } Error GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, SkString* log) const { // Draw twice, once with worker threads, and once without. Verify that we get the same result. // Also, force us to only use the software path renderer, so we really stress-test the threaded // version of that code. GrContextOptions contextOptions = this->baseContextOptions(); contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone; contextOptions.fExecutor = fExecutor.get(); Error err = this->onDraw(src, dst, wStream, log, contextOptions); if (!err.isEmpty() || !dst) { return err; } SkBitmap reference; SkString refLog; SkDynamicMemoryWStream refStream; contextOptions.fExecutor = nullptr; Error refErr = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); if (!refErr.isEmpty()) { return refErr; } return compare_bitmaps(reference, *dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { if (src.size().isEmpty()) { return "Source has empty dimensions"; } SkASSERT(doc); int pageCount = src.pageCount(); for (int i = 0; i < pageCount; ++i) { int width = src.size(i).width(), height = src.size(i).height(); SkCanvas* canvas = doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); if (!canvas) { return "SkDocument::beginPage(w,h) returned nullptr"; } Error err = src.draw(i, canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } doc->close(); dst->flush(); return ""; } Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkDocument::PDFMetadata metadata; metadata.fTitle = src.name(); metadata.fSubject = "rendering correctness test"; metadata.fCreator = "Skia/DM"; metadata.fRasterDPI = fRasterDpi; metadata.fPDFA = fPDFA; sk_sp doc = SkDocument::MakePDF(dst, metadata); if (!doc) { return "SkDocument::MakePDF() returned nullptr"; } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ XPSSink::XPSSink() {} #ifdef SK_BUILD_FOR_WIN static SkTScopedComPtr make_xps_factory() { IXpsOMObjectFactory* factory; HRN(CoCreateInstance(CLSID_XpsOMObjectFactory, nullptr, CLSCTX_INPROC_SERVER, IID_PPV_ARGS(&factory))); return SkTScopedComPtr(factory); } Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoCoInitialize com; if (!com.succeeded()) { return "Could not initialize COM."; } SkTScopedComPtr factory = make_xps_factory(); if (!factory) { return "Failed to create XPS Factory."; } sk_sp doc(SkDocument::MakeXPS(dst, factory.get())); if (!doc) { return "SkDocument::MakeXPS() returned nullptr"; } return draw_skdocument(src, doc.get(), dst); } #else Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { return "XPS not supported on this platform."; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ PipeSink::PipeSink() {} Error PipeSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { return src.draw(SkPipeSerializer().beginWrite(SkRect::Make(src.size()), dst)); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } recorder.finishRecordingAsPicture()->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkDebugCanvas debugCanvas(src.size().width(), src.size().height()); Error err = src.draw(&debugCanvas); if (!err.isEmpty()) { return err; } std::unique_ptr nullCanvas = SkMakeNullCanvas(); UrlDataManager dataManager(SkString("data")); Json::Value json = debugCanvas.toJSON( dataManager, debugCanvas.getSize(), nullCanvas.get()); std::string value = Json::StyledWriter().write(json); return dst->write(value.c_str(), value.size()) ? "" : "SkWStream Error"; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink(int pageIndex) : fPageIndex(pageIndex) {} Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { #if defined(SK_XML) if (src.pageCount() > 1) { int pageCount = src.pageCount(); if (fPageIndex > pageCount - 1) { return Error(SkStringPrintf("Page index %d too high for document with only %d pages.", fPageIndex, pageCount)); } } std::unique_ptr xmlWriter(new SkXMLStreamWriter(dst)); return src.draw(fPageIndex, SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), xmlWriter.get()) .get()); #else return Error("SVG sink is disabled."); #endif // SK_XML } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType, sk_sp colorSpace) : fColorType(colorType) , fColorSpace(std::move(colorSpace)) {} void RasterSink::allocPixels(const Src& src, SkBitmap* dst) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixelsFlags(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType, fColorSpace), SkBitmap::kZeroPixels_AllocFlag); } Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { this->allocPixels(src, dst); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ThreadedSink::ThreadedSink(SkColorType colorType, sk_sp colorSpace) : RasterSink(colorType, colorSpace) , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_backendThreads)) { } Error ThreadedSink::draw(const Src& src, SkBitmap* dst, SkWStream* stream, SkString* str) const { this->allocPixels(src, dst); std::unique_ptr device(new SkThreadedBMPDevice( *dst, FLAGS_backendTiles, FLAGS_backendThreads, fExecutor.get())); std::unique_ptr canvas(new SkCanvas(device.get())); Error result = src.draw(canvas.get()); canvas->flush(); return result; // ??? yuqian: why does the following give me segmentation fault while the above one works? // The seg fault occurs right in the beginning of ThreadedSink::draw with invalid // memory address (it would crash without even calling this->allocPixels). // SkThreadedBMPDevice device(*dst, tileCnt, FLAGS_cpuThreads, fExecutor.get()); // SkCanvas canvas(&device); // Error result = src.draw(&canvas); // canvas.flush(); // return result; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. // Several examples below. template static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, SkISize size, const Fn& draw) { class ProxySrc : public Src { public: ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {} Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } Name name() const override { return "ProxySrc"; } SkISize size() const override { return fSize; } private: SkISize fSize; const Fn& fDraw; }; return sink->draw(ProxySrc(size, draw), bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output."); // Is *bitmap identical to what you get drawing src into sink? static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) { // We can only check raster outputs. // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.) if (FLAGS_check && bitmap) { SkBitmap reference; SkString log; SkDynamicMemoryWStream wStream; Error err = sink->draw(src, &reference, &wStream, &log); // If we can draw into this Sink via some pipeline, we should be able to draw directly. SkASSERT(err.isEmpty()); if (!err.isEmpty()) { return err; } return compare_bitmaps(reference, *bitmap); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())}; } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkMatrix matrix = fMatrix; SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->concat(matrix); return src.draw(canvas); }); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Error err = fSink->draw(src, bitmap, stream, log); if (!err.isEmpty()) { return err; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return "Cannot upright --matrix."; } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); canvas.drawBitmap(*bitmap, 0, 0, &paint); *bitmap = uprighted; return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaSerialization::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } sk_sp pic(recorder.finishRecordingAsPicture()); // Serialize it and then deserialize it. sk_sp deserialized(SkPicture::MakeFromData(pic->serialize().get())); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->drawPicture(deserialized); return check_against_reference(bitmap, src, fSink.get()); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : Via(sink) , fW(w) , fH(h) , fFactory(factory) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()), fFactory.get())); if (!err.isEmpty()) { return err; } sk_sp pic(recorder.finishRecordingAsPicture()); return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { const int xTiles = (size.width() + fW - 1) / fW, yTiles = (size.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTArray> surfaces; // surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. auto s = canvas->makeSurface(info); if (!s) { s = SkSurface::MakeRaster(info); // Some canvases can't create surfaces. } surfaces.push_back(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, pic.get()); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { sk_sp image(surfaces[i+xTiles*j]->makeImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkPictureRecorder recorder; sk_sp pic; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } pic = recorder.finishRecordingAsPicture(); canvas->drawPicture(pic); return check_against_reference(bitmap, src, fSink.get()); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkDynamicMemoryWStream tmpStream; Error err = src.draw(SkPipeSerializer().beginWrite(SkRect::Make(size), &tmpStream)); if (!err.isEmpty()) { return err; } sk_sp data = tmpStream.detachAsData(); SkPipeDeserializer().playback(data->data(), data->size(), canvas); return check_against_reference(bitmap, src, fSink.get()); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #ifdef TEST_VIA_SVG #include "SkXMLWriter.h" #include "SkSVGCanvas.h" #include "SkSVGDOM.h" Error ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkDynamicMemoryWStream wstream; SkXMLStreamWriter writer(&wstream); Error err = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get()); if (!err.isEmpty()) { return err; } std::unique_ptr rstream(wstream.detachAsStream()); auto dom = SkSVGDOM::MakeFromStream(*rstream); if (dom) { dom->setContainerSize(SkSize::Make(size)); dom->render(canvas); } return ""; }); } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaLite::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); SkIRect bounds = {0,0, size.width(), size.height()}; return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkLiteDL dl; SkLiteRecorder rec; rec.reset(&dl, bounds); Error err = src.draw(&rec); if (!err.isEmpty()) { return err; } dl.draw(canvas); return check_against_reference(bitmap, src, fSink.get()); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaCSXform::ViaCSXform(Sink* sink, sk_sp cs, bool colorSpin) : Via(sink) , fCS(std::move(cs)) , fColorSpin(colorSpin) {} Error ViaCSXform::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { { SkAutoCanvasRestore acr(canvas, true); auto proxy = SkCreateColorSpaceXformCanvas(canvas, fCS); Error err = src.draw(proxy.get()); if (!err.isEmpty()) { return err; } } // Undo the color spin, so we can look at the pixels in Gold. if (fColorSpin) { SkBitmap pixels; pixels.allocPixels(canvas->imageInfo()); canvas->readPixels(pixels, 0, 0); SkPaint rotateColors; SkScalar matrix[20] = { 0, 0, 1, 0, 0, // B -> R 1, 0, 0, 0, 0, // R -> G 0, 1, 0, 0, 0, // G -> B 0, 0, 0, 1, 0 }; rotateColors.setBlendMode(SkBlendMode::kSrc); rotateColors.setColorFilter(SkColorFilter::MakeMatrixFilterRowMajor255(matrix)); canvas->drawBitmap(pixels, 0, 0, &rotateColors); } return ""; }); } } // namespace DM