/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Description: * This test defines a series of elementatry test steps that perform * a single or a small group of canvas API calls. Each test step is * used in several test cases that verify that different types of SkCanvas * flavors and derivatives pass it and yield consistent behavior. The * test cases analyse results that are queryable through the API. They do * not look at rendering results. * * Adding test stepss: * The general pattern for creating a new test step is to write a test * function of the form: * * static void MyTestStepFunction(SkCanvas* canvas, * const TestData& d, * skiatest::Reporter* reporter, * CanvasTestStep* testStep) * { * canvas->someCanvasAPImethod(); * (...) * REPORTER_ASSERT(reporter, (...), \ * testStep->assertMessage()); * } * * The definition of the test step function should be followed by an * invocation of the TEST_STEP macro, which generates a class and * instance for the test step: * * TEST_STEP(MyTestStep, MyTestStepFunction) * * There are also short hand macros for defining simple test steps * in a single line of code. A simple test step is a one that is made * of a single canvas API call. * * SIMPLE_TEST_STEP(MytestStep, someCanvasAPIMethod()); * * There is another macro called SIMPLE_TEST_STEP_WITH_ASSERT that * works the same way as SIMPLE_TEST_STEP, and additionally verifies * that the invoked method returns a non-zero value. */ #include "SkBitmap.h" #include "SkBlendMode.h" #include "SkCanvas.h" #include "SkCanvasStack.h" #include "SkClipOp.h" #include "SkClipOpPriv.h" #include "SkColor.h" #include "SkDocument.h" #include "SkFlattenable.h" #include "SkImageFilter.h" #include "SkImageInfo.h" #include "SkMalloc.h" #include "SkMatrix.h" #include "SkNWayCanvas.h" #include "SkPaint.h" #include "SkPaintFilterCanvas.h" #include "SkPath.h" #include "SkPictureRecorder.h" #include "SkPixmap.h" #include "SkPoint.h" #include "SkRect.h" #include "SkRefCnt.h" #include "SkRegion.h" #include "SkScalar.h" #include "SkShader.h" #include "SkSize.h" #include "SkSpecialImage.h" #include "SkStream.h" #include "SkString.h" #include "SkSurface.h" #include "SkTDArray.h" #include "SkTemplates.h" #include "SkTypes.h" #include "SkVertices.h" #include "Test.h" #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK #include "SkColorData.h" #include "SkColorSpace.h" #endif #include #include class SkColorSpaceXformer; class SkReadBuffer; template class SkTCopyOnFirstWrite; DEF_TEST(canvas_clipbounds, reporter) { SkCanvas canvas(10, 10); SkIRect irect, irect2; SkRect rect, rect2; irect = canvas.getDeviceClipBounds(); REPORTER_ASSERT(reporter, irect == SkIRect::MakeWH(10, 10)); REPORTER_ASSERT(reporter, canvas.getDeviceClipBounds(&irect2)); REPORTER_ASSERT(reporter, irect == irect2); // local bounds are always too big today -- can we trim them? rect = canvas.getLocalClipBounds(); REPORTER_ASSERT(reporter, rect.contains(SkRect::MakeWH(10, 10))); REPORTER_ASSERT(reporter, canvas.getLocalClipBounds(&rect2)); REPORTER_ASSERT(reporter, rect == rect2); canvas.clipRect(SkRect::MakeEmpty()); irect = canvas.getDeviceClipBounds(); REPORTER_ASSERT(reporter, irect == SkIRect::MakeEmpty()); REPORTER_ASSERT(reporter, !canvas.getDeviceClipBounds(&irect2)); REPORTER_ASSERT(reporter, irect == irect2); rect = canvas.getLocalClipBounds(); REPORTER_ASSERT(reporter, rect == SkRect::MakeEmpty()); REPORTER_ASSERT(reporter, !canvas.getLocalClipBounds(&rect2)); REPORTER_ASSERT(reporter, rect == rect2); // Test for wacky sizes that we (historically) have guarded against { SkCanvas c(-10, -20); REPORTER_ASSERT(reporter, c.getBaseLayerSize() == SkISize::MakeEmpty()); SkPictureRecorder().beginRecording({ 5, 5, 4, 4 }); } } // Will call proc with multiple styles of canvas (recording, raster, pdf) template static void multi_canvas_driver(int w, int h, F proc) { proc(SkPictureRecorder().beginRecording(SkRect::MakeIWH(w, h))); SkNullWStream stream; proc(SkDocument::MakePDF(&stream)->beginPage(SkIntToScalar(w), SkIntToScalar(h))); proc(SkSurface::MakeRasterN32Premul(w, h, nullptr)->getCanvas()); } const SkIRect gBaseRestrictedR = { 0, 0, 10, 10 }; static void test_restriction(skiatest::Reporter* reporter, SkCanvas* canvas) { REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == gBaseRestrictedR); const SkIRect restrictionR = { 2, 2, 8, 8 }; canvas->androidFramework_setDeviceClipRestriction(restrictionR); REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == restrictionR); const SkIRect clipR = { 4, 4, 6, 6 }; canvas->clipRect(SkRect::Make(clipR), SkClipOp::kIntersect); REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == clipR); #ifdef SK_SUPPORT_DEPRECATED_CLIPOPS // now test that expanding clipops can't exceed the restriction const SkClipOp expanders[] = { SkClipOp::kUnion_deprecated, SkClipOp::kXOR_deprecated, SkClipOp::kReverseDifference_deprecated, SkClipOp::kReplace_deprecated, }; const SkRect expandR = { 0, 0, 5, 9 }; SkASSERT(!SkRect::Make(restrictionR).contains(expandR)); for (SkClipOp op : expanders) { canvas->save(); canvas->clipRect(expandR, op); REPORTER_ASSERT(reporter, gBaseRestrictedR.contains(canvas->getDeviceClipBounds())); canvas->restore(); } #endif } /** * Clip restriction logic exists in the canvas itself, and in various kinds of devices. * * This test explicitly tries to exercise that variety: * - picture : empty device but exercises canvas itself * - pdf : uses SkClipStack in its device (as does SVG and GPU) * - raster : uses SkRasterClip in its device */ DEF_TEST(canvas_clip_restriction, reporter) { multi_canvas_driver(gBaseRestrictedR.width(), gBaseRestrictedR.height(), [reporter](SkCanvas* canvas) { test_restriction(reporter, canvas); }); } DEF_TEST(canvas_empty_clip, reporter) { multi_canvas_driver(50, 50, [reporter](SkCanvas* canvas) { canvas->save(); canvas->clipRect({0, 0, 20, 40 }); REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); canvas->clipRect({30, 0, 50, 40 }); REPORTER_ASSERT(reporter, canvas->isClipEmpty()); }); } static const int kWidth = 2, kHeight = 2; static void createBitmap(SkBitmap* bm, SkColor color) { bm->allocN32Pixels(kWidth, kHeight); bm->eraseColor(color); } /////////////////////////////////////////////////////////////////////////////// // Constants used by test steps const SkPoint kTestPoints[] = { {SkIntToScalar(0), SkIntToScalar(0)}, {SkIntToScalar(2), SkIntToScalar(1)}, {SkIntToScalar(0), SkIntToScalar(2)} }; const SkPoint kTestPoints2[] = { { SkIntToScalar(0), SkIntToScalar(1) }, { SkIntToScalar(1), SkIntToScalar(1) }, { SkIntToScalar(2), SkIntToScalar(1) }, { SkIntToScalar(3), SkIntToScalar(1) }, { SkIntToScalar(4), SkIntToScalar(1) }, { SkIntToScalar(5), SkIntToScalar(1) }, { SkIntToScalar(6), SkIntToScalar(1) }, { SkIntToScalar(7), SkIntToScalar(1) }, { SkIntToScalar(8), SkIntToScalar(1) }, { SkIntToScalar(9), SkIntToScalar(1) }, { SkIntToScalar(10), SkIntToScalar(1) } }; struct TestData { public: TestData() : fRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0), SkIntToScalar(2), SkIntToScalar(1))) , fMatrix(TestMatrix()) , fPath(TestPath()) , fNearlyZeroLengthPath(TestNearlyZeroLengthPath()) , fIRect(SkIRect::MakeXYWH(0, 0, 2, 1)) , fRegion(TestRegion()) , fColor(0x01020304) , fPoints(kTestPoints) , fPointCount(3) , fWidth(2) , fHeight(2) , fText("Hello World") , fPoints2(kTestPoints2) , fBitmap(TestBitmap()) { } SkRect fRect; SkMatrix fMatrix; SkPath fPath; SkPath fNearlyZeroLengthPath; SkIRect fIRect; SkRegion fRegion; SkColor fColor; SkPaint fPaint; const SkPoint* fPoints; size_t fPointCount; int fWidth; int fHeight; SkString fText; const SkPoint* fPoints2; SkBitmap fBitmap; private: static SkMatrix TestMatrix() { SkMatrix matrix; matrix.reset(); matrix.setScale(SkIntToScalar(2), SkIntToScalar(3)); return matrix; } static SkPath TestPath() { SkPath path; path.addRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0), SkIntToScalar(2), SkIntToScalar(1))); return path; } static SkPath TestNearlyZeroLengthPath() { SkPath path; SkPoint pt1 = { 0, 0 }; SkPoint pt2 = { 0, SK_ScalarNearlyZero }; SkPoint pt3 = { SkIntToScalar(1), 0 }; SkPoint pt4 = { SkIntToScalar(1), SK_ScalarNearlyZero/2 }; path.moveTo(pt1); path.lineTo(pt2); path.lineTo(pt3); path.lineTo(pt4); return path; } static SkRegion TestRegion() { SkRegion region; SkIRect rect = SkIRect::MakeXYWH(0, 0, 2, 1); region.setRect(rect); return region; } static SkBitmap TestBitmap() { SkBitmap bitmap; createBitmap(&bitmap, 0x05060708); return bitmap; } }; // Format strings that describe the test context. The %s token is where // the name of the test step is inserted. The context is required for // disambiguating the error in the case of failures that are reported in // functions that are called multiple times in different contexts (test // cases and test steps). static const char* const kDefaultAssertMessageFormat = "%s"; static const char* const kCanvasDrawAssertMessageFormat = "Drawing test step %s with SkCanvas"; static const char* const kPdfAssertMessageFormat = "PDF sanity check failed %s"; class CanvasTestStep; static SkTDArray& testStepArray() { static SkTDArray theTests; return theTests; } class CanvasTestStep { public: CanvasTestStep(bool fEnablePdfTesting = true) { *testStepArray().append() = this; fAssertMessageFormat = kDefaultAssertMessageFormat; this->fEnablePdfTesting = fEnablePdfTesting; } virtual ~CanvasTestStep() { } virtual void draw(SkCanvas*, const TestData&, skiatest::Reporter*) = 0; virtual const char* name() const = 0; const char* assertMessage() { fAssertMessage.printf(fAssertMessageFormat, name()); return fAssertMessage.c_str(); } void setAssertMessageFormat(const char* format) { fAssertMessageFormat = format; } bool enablePdfTesting() { return fEnablePdfTesting; } private: SkString fAssertMessage; const char* fAssertMessageFormat; bool fEnablePdfTesting; }; /////////////////////////////////////////////////////////////////////////////// // Macros for defining test steps #define TEST_STEP(NAME, FUNCTION) \ class NAME##_TestStep : public CanvasTestStep{ \ public: \ virtual void draw(SkCanvas* canvas, const TestData& d, \ skiatest::Reporter* reporter) { \ FUNCTION (canvas, d, reporter, this); \ } \ virtual const char* name() const {return #NAME ;} \ }; \ static NAME##_TestStep NAME##_TestStepInstance; #define TEST_STEP_NO_PDF(NAME, FUNCTION) \ class NAME##_TestStep : public CanvasTestStep{ \ public: \ NAME##_TestStep() : CanvasTestStep(false) {} \ virtual void draw(SkCanvas* canvas, const TestData& d, \ skiatest::Reporter* reporter) { \ FUNCTION (canvas, d, reporter, this); \ } \ virtual const char* name() const {return #NAME ;} \ }; \ static NAME##_TestStep NAME##_TestStepInstance; #define SIMPLE_TEST_STEP(NAME, CALL) \ static void NAME##TestStep(SkCanvas* canvas, const TestData& d, \ skiatest::Reporter*, CanvasTestStep*) { \ canvas-> CALL ; \ } \ TEST_STEP(NAME, NAME##TestStep ) #define SIMPLE_TEST_STEP_WITH_ASSERT(NAME, CALL) \ static void NAME##TestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, \ CanvasTestStep* testStep) { \ REPORTER_ASSERT(reporter, canvas->CALL, testStep->assertMessage()); \ } \ TEST_STEP(NAME, NAME##TestStep) /////////////////////////////////////////////////////////////////////////////// // Basic test steps for most virtual methods in SkCanvas that draw or affect // the state of the canvas. SIMPLE_TEST_STEP(Translate, translate(SkIntToScalar(1), SkIntToScalar(2))); SIMPLE_TEST_STEP(Scale, scale(SkIntToScalar(1), SkIntToScalar(2))); SIMPLE_TEST_STEP(Rotate, rotate(SkIntToScalar(1))); SIMPLE_TEST_STEP(Skew, skew(SkIntToScalar(1), SkIntToScalar(2))); SIMPLE_TEST_STEP(Concat, concat(d.fMatrix)); SIMPLE_TEST_STEP(SetMatrix, setMatrix(d.fMatrix)); SIMPLE_TEST_STEP(ClipRect, clipRect(d.fRect)); SIMPLE_TEST_STEP(ClipPath, clipPath(d.fPath)); SIMPLE_TEST_STEP(ClipRegion, clipRegion(d.fRegion, kReplace_SkClipOp)); SIMPLE_TEST_STEP(Clear, clear(d.fColor)); /////////////////////////////////////////////////////////////////////////////// // Complex test steps static void SaveMatrixClipStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter* reporter, CanvasTestStep* testStep) { int saveCount = canvas->getSaveCount(); canvas->save(); canvas->translate(SkIntToScalar(1), SkIntToScalar(2)); canvas->clipRegion(d.fRegion); canvas->restore(); REPORTER_ASSERT(reporter, canvas->getSaveCount() == saveCount, testStep->assertMessage()); REPORTER_ASSERT(reporter, canvas->getTotalMatrix().isIdentity(), testStep->assertMessage()); // REPORTER_ASSERT(reporter, canvas->getTotalClip() != kTestRegion, // testStep->assertMessage()); } TEST_STEP(SaveMatrixClip, SaveMatrixClipStep); static void SaveLayerStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter* reporter, CanvasTestStep* testStep) { int saveCount = canvas->getSaveCount(); canvas->saveLayer(nullptr, nullptr); canvas->restore(); REPORTER_ASSERT(reporter, canvas->getSaveCount() == saveCount, testStep->assertMessage()); } TEST_STEP(SaveLayer, SaveLayerStep); static void BoundedSaveLayerStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter* reporter, CanvasTestStep* testStep) { int saveCount = canvas->getSaveCount(); canvas->saveLayer(&d.fRect, nullptr); canvas->restore(); REPORTER_ASSERT(reporter, canvas->getSaveCount() == saveCount, testStep->assertMessage()); } TEST_STEP(BoundedSaveLayer, BoundedSaveLayerStep); static void PaintSaveLayerStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter* reporter, CanvasTestStep* testStep) { int saveCount = canvas->getSaveCount(); canvas->saveLayer(nullptr, &d.fPaint); canvas->restore(); REPORTER_ASSERT(reporter, canvas->getSaveCount() == saveCount, testStep->assertMessage()); } TEST_STEP(PaintSaveLayer, PaintSaveLayerStep); static void TwoClipOpsStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { // This test exercises a functionality in SkPicture that leads to the // recording of restore offset placeholders. This test will trigger an // assertion at playback time if the placeholders are not properly // filled when the recording ends. canvas->clipRect(d.fRect); canvas->clipRegion(d.fRegion); } TEST_STEP(TwoClipOps, TwoClipOpsStep); // exercise fix for http://code.google.com/p/skia/issues/detail?id=560 // ('SkPathStroker::lineTo() fails for line with length SK_ScalarNearlyZero') static void DrawNearlyZeroLengthPathTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { SkPaint paint; paint.setStrokeWidth(SkIntToScalar(1)); paint.setStyle(SkPaint::kStroke_Style); canvas->drawPath(d.fNearlyZeroLengthPath, paint); } TEST_STEP(DrawNearlyZeroLengthPath, DrawNearlyZeroLengthPathTestStep); static void DrawVerticesShaderTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { SkPoint pts[4]; pts[0].set(0, 0); pts[1].set(SkIntToScalar(d.fWidth), 0); pts[2].set(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight)); pts[3].set(0, SkIntToScalar(d.fHeight)); SkPaint paint; paint.setShader(SkShader::MakeBitmapShader(d.fBitmap, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode)); canvas->drawVertices(SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pts, pts, nullptr), SkBlendMode::kModulate, paint); } // NYI: issue 240. TEST_STEP_NO_PDF(DrawVerticesShader, DrawVerticesShaderTestStep); static void DrawPictureTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { SkPictureRecorder recorder; SkCanvas* testCanvas = recorder.beginRecording(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight), nullptr, 0); testCanvas->scale(SkIntToScalar(2), SkIntToScalar(1)); testCanvas->clipRect(d.fRect); testCanvas->drawRect(d.fRect, d.fPaint); canvas->drawPicture(recorder.finishRecordingAsPicture()); } TEST_STEP(DrawPicture, DrawPictureTestStep); static void SaveRestoreTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter* reporter, CanvasTestStep* testStep) { int baseSaveCount = canvas->getSaveCount(); int n = canvas->save(); REPORTER_ASSERT(reporter, baseSaveCount == n, testStep->assertMessage()); REPORTER_ASSERT(reporter, baseSaveCount + 1 == canvas->getSaveCount(), testStep->assertMessage()); canvas->save(); canvas->save(); REPORTER_ASSERT(reporter, baseSaveCount + 3 == canvas->getSaveCount(), testStep->assertMessage()); canvas->restoreToCount(baseSaveCount + 1); REPORTER_ASSERT(reporter, baseSaveCount + 1 == canvas->getSaveCount(), testStep->assertMessage()); // should this pin to 1, or be a no-op, or crash? canvas->restoreToCount(0); REPORTER_ASSERT(reporter, 1 == canvas->getSaveCount(), testStep->assertMessage()); } TEST_STEP(SaveRestore, SaveRestoreTestStep); static void NestedSaveRestoreWithSolidPaintTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { // This test step challenges the TestDeferredCanvasStateConsistency // test cases because the opaque paint can trigger an optimization // that discards previously recorded commands. The challenge is to maintain // correct clip and matrix stack state. canvas->resetMatrix(); canvas->rotate(SkIntToScalar(30)); canvas->save(); canvas->translate(SkIntToScalar(2), SkIntToScalar(1)); canvas->save(); canvas->scale(SkIntToScalar(3), SkIntToScalar(3)); SkPaint paint; paint.setColor(0xFFFFFFFF); canvas->drawPaint(paint); canvas->restore(); canvas->restore(); } TEST_STEP(NestedSaveRestoreWithSolidPaint, \ NestedSaveRestoreWithSolidPaintTestStep); static void NestedSaveRestoreWithFlushTestStep(SkCanvas* canvas, const TestData& d, skiatest::Reporter*, CanvasTestStep*) { // This test step challenges the TestDeferredCanvasStateConsistency // test case because the canvas flush on a deferred canvas will // reset the recording session. The challenge is to maintain correct // clip and matrix stack state on the playback canvas. canvas->resetMatrix(); canvas->rotate(SkIntToScalar(30)); canvas->save(); canvas->translate(SkIntToScalar(2), SkIntToScalar(1)); canvas->save(); canvas->scale(SkIntToScalar(3), SkIntToScalar(3)); canvas->drawRect(d.fRect,d.fPaint); canvas->flush(); canvas->restore(); canvas->restore(); } TEST_STEP(NestedSaveRestoreWithFlush, NestedSaveRestoreWithFlushTestStep); static void TestPdfDevice(skiatest::Reporter* reporter, const TestData& d, CanvasTestStep* step) { SkDynamicMemoryWStream outStream; sk_sp doc(SkDocument::MakePDF(&outStream)); REPORTER_ASSERT(reporter, doc); if (!doc) { return; } SkCanvas* canvas = doc->beginPage(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight)); REPORTER_ASSERT(reporter, canvas); step->setAssertMessageFormat(kPdfAssertMessageFormat); step->draw(canvas, d, reporter); } /* * This sub-test verifies that the test step passes when executed * with SkCanvas and with classes derrived from SkCanvas. It also verifies * that the all canvas derivatives report the same state as an SkCanvas * after having executed the test step. */ static void TestOverrideStateConsistency(skiatest::Reporter* reporter, const TestData& d, CanvasTestStep* testStep) { SkBitmap referenceStore; createBitmap(&referenceStore, 0xFFFFFFFF); SkCanvas referenceCanvas(referenceStore); testStep->setAssertMessageFormat(kCanvasDrawAssertMessageFormat); testStep->draw(&referenceCanvas, d, reporter); } static void test_newraster(skiatest::Reporter* reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10); const size_t minRowBytes = info.minRowBytes(); const size_t size = info.computeByteSize(minRowBytes); SkAutoTMalloc storage(size); SkPMColor* baseAddr = storage.get(); sk_bzero(baseAddr, size); std::unique_ptr canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes); REPORTER_ASSERT(reporter, canvas); SkPixmap pmap; const SkPMColor* addr = canvas->peekPixels(&pmap) ? pmap.addr32() : nullptr; REPORTER_ASSERT(reporter, addr); REPORTER_ASSERT(reporter, info == pmap.info()); REPORTER_ASSERT(reporter, minRowBytes == pmap.rowBytes()); for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { REPORTER_ASSERT(reporter, 0 == addr[x]); } addr = (const SkPMColor*)((const char*)addr + pmap.rowBytes()); } // now try a deliberately bad info info = info.makeWH(-1, info.height()); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // too big info = info.makeWH(1 << 30, 1 << 30); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // not a valid pixel type info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType()); REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes)); // We should succeed with a zero-sized valid info info = SkImageInfo::MakeN32Premul(0, 0); canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes); REPORTER_ASSERT(reporter, canvas); } DEF_TEST(Canvas, reporter) { TestData d; for (int testStep = 0; testStep < testStepArray().count(); testStep++) { TestOverrideStateConsistency(reporter, d, testStepArray()[testStep]); if (testStepArray()[testStep]->enablePdfTesting()) { TestPdfDevice(reporter, d, testStepArray()[testStep]); } } test_newraster(reporter); } DEF_TEST(Canvas_SaveState, reporter) { SkCanvas canvas(10, 10); REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount()); int n = canvas.save(); REPORTER_ASSERT(reporter, 1 == n); REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount()); n = canvas.saveLayer(nullptr, nullptr); REPORTER_ASSERT(reporter, 2 == n); REPORTER_ASSERT(reporter, 3 == canvas.getSaveCount()); canvas.restore(); REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount()); canvas.restore(); REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount()); } DEF_TEST(Canvas_ClipEmptyPath, reporter) { SkCanvas canvas(10, 10); canvas.save(); SkPath path; canvas.clipPath(path); canvas.restore(); canvas.save(); path.moveTo(5, 5); canvas.clipPath(path); canvas.restore(); canvas.save(); path.moveTo(7, 7); canvas.clipPath(path); // should not assert here canvas.restore(); } namespace { class MockFilterCanvas : public SkPaintFilterCanvas { public: MockFilterCanvas(SkCanvas* canvas) : INHERITED(canvas) { } protected: bool onFilter(SkTCopyOnFirstWrite*, Type) const override { return true; } private: typedef SkPaintFilterCanvas INHERITED; }; } // anonymous namespace // SkPaintFilterCanvas should inherit the initial target canvas state. DEF_TEST(PaintFilterCanvas_ConsistentState, reporter) { SkCanvas canvas(100, 100); canvas.clipRect(SkRect::MakeXYWH(12.7f, 12.7f, 75, 75)); canvas.scale(0.5f, 0.75f); MockFilterCanvas filterCanvas(&canvas); REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix()); REPORTER_ASSERT(reporter, canvas.getLocalClipBounds() == filterCanvas.getLocalClipBounds()); filterCanvas.clipRect(SkRect::MakeXYWH(30.5f, 30.7f, 100, 100)); filterCanvas.scale(0.75f, 0.5f); REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix()); REPORTER_ASSERT(reporter, filterCanvas.getLocalClipBounds().contains(canvas.getLocalClipBounds())); } /////////////////////////////////////////////////////////////////////////////////////////////////// // Subclass that takes a bool*, which it updates in its construct (true) and destructor (false) // to allow the caller to know how long the object is alive. class LifeLineCanvas : public SkCanvas { bool* fLifeLine; public: LifeLineCanvas(int w, int h, bool* lifeline) : SkCanvas(w, h), fLifeLine(lifeline) { *fLifeLine = true; } ~LifeLineCanvas() { *fLifeLine = false; } }; // Check that NWayCanvas does NOT try to manage the lifetime of its sub-canvases DEF_TEST(NWayCanvas, r) { const int w = 10; const int h = 10; bool life[2]; { LifeLineCanvas c0(w, h, &life[0]); REPORTER_ASSERT(r, life[0]); } REPORTER_ASSERT(r, !life[0]); std::unique_ptr c0 = std::unique_ptr(new LifeLineCanvas(w, h, &life[0])); std::unique_ptr c1 = std::unique_ptr(new LifeLineCanvas(w, h, &life[1])); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); { SkNWayCanvas nway(w, h); nway.addCanvas(c0.get()); nway.addCanvas(c1.get()); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Now assert that the death of the nway has NOT also killed the sub-canvases REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Check that CanvasStack DOES manage the lifetime of its sub-canvases DEF_TEST(CanvasStack, r) { const int w = 10; const int h = 10; bool life[2]; std::unique_ptr c0 = std::unique_ptr(new LifeLineCanvas(w, h, &life[0])); std::unique_ptr c1 = std::unique_ptr(new LifeLineCanvas(w, h, &life[1])); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); { SkCanvasStack stack(w, h); stack.pushCanvas(std::move(c0), {0,0}); stack.pushCanvas(std::move(c1), {0,0}); REPORTER_ASSERT(r, life[0]); REPORTER_ASSERT(r, life[1]); } // Now assert that the death of the canvasstack has also killed the sub-canvases REPORTER_ASSERT(r, !life[0]); REPORTER_ASSERT(r, !life[1]); } static void test_cliptype(SkCanvas* canvas, skiatest::Reporter* r) { REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); canvas->save(); canvas->clipRect({0, 0, 0, 0}); REPORTER_ASSERT(r, canvas->isClipEmpty()); REPORTER_ASSERT(r, !canvas->isClipRect()); canvas->restore(); canvas->save(); canvas->clipRect({2, 2, 6, 6}); REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); canvas->restore(); canvas->save(); canvas->clipRect({2, 2, 6, 6}, SkClipOp::kDifference); // punch a hole in the clip REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, !canvas->isClipRect()); canvas->restore(); REPORTER_ASSERT(r, !canvas->isClipEmpty()); REPORTER_ASSERT(r, canvas->isClipRect()); } DEF_TEST(CanvasClipType, r) { // test rasterclip backend test_cliptype(SkSurface::MakeRasterN32Premul(10, 10)->getCanvas(), r); // test clipstack backend SkDynamicMemoryWStream stream; test_cliptype(SkDocument::MakePDF(&stream)->beginPage(100, 100), r); } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK DEF_TEST(Canvas_LegacyColorBehavior, r) { sk_sp cs = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kAdobeRGB_Gamut); // Make a Adobe RGB bitmap. SkBitmap bitmap; bitmap.allocPixels(SkImageInfo::MakeN32(1, 1, kOpaque_SkAlphaType, cs)); bitmap.eraseColor(0xFF000000); // Wrap it in a legacy canvas. Test that the canvas behaves like a legacy canvas. SkCanvas canvas(bitmap, SkCanvas::ColorBehavior::kLegacy); REPORTER_ASSERT(r, !canvas.imageInfo().colorSpace()); SkPaint p; p.setColor(SK_ColorRED); canvas.drawIRect(SkIRect::MakeWH(1, 1), p); REPORTER_ASSERT(r, SK_ColorRED == SkSwizzle_BGRA_to_PMColor(*bitmap.getAddr32(0, 0))); } #endif namespace { class ZeroBoundsImageFilter : public SkImageFilter { public: static sk_sp Make() { return sk_sp(new ZeroBoundsImageFilter); } SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(ZeroBoundsImageFilter) protected: sk_sp onFilterImage(SkSpecialImage*, const Context&, SkIPoint*) const override { return nullptr; } sk_sp onMakeColorSpace(SkColorSpaceXformer*) const override { return nullptr; } SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix&, MapDirection) const override { return SkIRect::MakeEmpty(); } private: ZeroBoundsImageFilter() : INHERITED(nullptr, 0, nullptr) {} typedef SkImageFilter INHERITED; }; sk_sp ZeroBoundsImageFilter::CreateProc(SkReadBuffer& buffer) { SkDEBUGFAIL("Should never get here"); return nullptr; } #ifndef SK_IGNORE_TO_STRING void ZeroBoundsImageFilter::toString(SkString* str) const { str->appendf("ZeroBoundsImageFilter: ()"); } #endif } // anonymous namespace DEF_TEST(Canvas_SaveLayerWithNullBoundsAndZeroBoundsImageFilter, r) { SkCanvas canvas(10, 10); SkPaint p; p.setImageFilter(ZeroBoundsImageFilter::Make()); // This should not fail any assert. canvas.saveLayer(nullptr, &p); REPORTER_ASSERT(r, canvas.getDeviceClipBounds().isEmpty()); canvas.restore(); }