/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CrashHandler.h" #include "DMJsonWriter.h" #include "DMSrcSink.h" #include "DMSrcSinkAndroid.h" #include "OverwriteLine.h" #include "ProcStats.h" #include "SkBBHFactory.h" #include "SkChecksum.h" #include "SkCommonFlags.h" #include "SkForceLinking.h" #include "SkGraphics.h" #include "SkInstCnt.h" #include "SkMD5.h" #include "SkOSFile.h" #include "SkTHash.h" #include "SkTaskGroup.h" #include "SkThreadUtils.h" #include "Test.h" #include "Timer.h" DEFINE_string(src, "tests gm skp image", "Source types to test."); DEFINE_bool(nameByHash, false, "If true, write to FLAGS_writePath[0]/.png instead of " "to FLAGS_writePath[0]////.png"); DEFINE_bool2(pathOpsExtended, x, false, "Run extended pathOps tests."); DEFINE_string(matrix, "1 0 0 1", "2x2 scale+skew matrix to apply or upright when using " "'matrix' or 'upright' in config."); DEFINE_bool(gpu_threading, false, "Allow GPU work to run on multiple threads?"); DEFINE_string(blacklist, "", "Space-separated config/src/srcOptions/name quadruples to blacklist. '_' matches anything. E.g. \n" "'--blacklist gpu skp _ _' will blacklist all SKPs drawn into the gpu config.\n" "'--blacklist gpu skp _ _ 8888 gm _ aarects' will also blacklist the aarects GM on 8888."); DEFINE_string2(readPath, r, "", "If set check for equality with golden results in this directory."); __SK_FORCE_IMAGE_DECODER_LINKING; using namespace DM; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SK_DECLARE_STATIC_MUTEX(gFailuresMutex); static SkTArray gFailures; static void fail(ImplicitString err) { SkAutoMutexAcquire lock(gFailuresMutex); SkDebugf("\n\nFAILURE: %s\n\n", err.c_str()); gFailures.push_back(err); } static int32_t gPending = 0; // Atomic. Total number of running and queued tasks. SK_DECLARE_STATIC_MUTEX(gRunningMutex); static SkTArray gRunning; static void done(double ms, ImplicitString config, ImplicitString src, ImplicitString srcOptions, ImplicitString name, ImplicitString note, ImplicitString log) { SkString id = SkStringPrintf("%s %s %s %s", config.c_str(), src.c_str(), srcOptions.c_str(), name.c_str()); { SkAutoMutexAcquire lock(gRunningMutex); for (int i = 0; i < gRunning.count(); i++) { if (gRunning[i] == id) { gRunning.removeShuffle(i); break; } } } if (!FLAGS_verbose) { note = ""; } if (!log.isEmpty()) { log.prepend("\n"); } auto pending = sk_atomic_dec(&gPending)-1; SkDebugf("%s(%4dMB %5d) %s\t%s%s%s", FLAGS_verbose ? "\n" : kSkOverwriteLine , sk_tools::getBestResidentSetSizeMB() , pending , HumanizeMs(ms).c_str() , id.c_str() , note.c_str() , log.c_str()); // We write our dm.json file every once in a while in case we crash. // Notice this also handles the final dm.json when pending == 0. if (pending % 500 == 0) { JsonWriter::DumpJson(); } } static void start(ImplicitString config, ImplicitString src, ImplicitString srcOptions, ImplicitString name) { SkString id = SkStringPrintf("%s %s %s %s", config.c_str(), src.c_str(), srcOptions.c_str(), name.c_str()); SkAutoMutexAcquire lock(gRunningMutex); gRunning.push_back(id); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ struct Gold : public SkString { Gold() : SkString("") {} Gold(ImplicitString sink, ImplicitString src, ImplicitString srcOptions, ImplicitString name, ImplicitString md5) : SkString("") { this->append(sink); this->append(src); this->append(srcOptions); this->append(name); this->append(md5); } static uint32_t Hash(const Gold& g) { return SkGoodHash((const SkString&)g); } }; static SkTHashSet gGold; static void add_gold(JsonWriter::BitmapResult r) { gGold.add(Gold(r.config, r.sourceType, r.sourceOptions, r.name, r.md5)); } static void gather_gold() { if (!FLAGS_readPath.isEmpty()) { SkString path(FLAGS_readPath[0]); path.append("/dm.json"); if (!JsonWriter::ReadJson(path.c_str(), add_gold)) { fail(SkStringPrintf("Couldn't read %s for golden results.", path.c_str())); } } } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ template struct Tagged : public SkAutoTDelete { const char* tag; const char* options; }; static const bool kMemcpyOK = true; static SkTArray, kMemcpyOK> gSrcs; static SkTArray, kMemcpyOK> gSinks; static void push_src(const char* tag, const char* options, Src* s) { SkAutoTDelete src(s); if (FLAGS_src.contains(tag) && !SkCommandLineFlags::ShouldSkip(FLAGS_match, src->name().c_str())) { Tagged& s = gSrcs.push_back(); s.reset(src.detach()); s.tag = tag; s.options = options; } } static bool codec_supported(const char* ext) { // FIXME: Once other versions of SkCodec are available, we can add them to this // list (and eventually we can remove this check once they are all supported). static const char* const exts[] = { "bmp", "gif", "png", "ico", "wbmp", "BMP", "GIF", "PNG", "ICO", "WBMP" }; for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) { if (0 == strcmp(exts[i], ext)) { return true; } } return false; } static void gather_srcs() { for (const skiagm::GMRegistry* r = skiagm::GMRegistry::Head(); r; r = r->next()) { push_src("gm", "", new GMSrc(r->factory())); } for (int i = 0; i < FLAGS_skps.count(); i++) { const char* path = FLAGS_skps[i]; if (sk_isdir(path)) { SkOSFile::Iter it(path, "skp"); for (SkString file; it.next(&file); ) { push_src("skp", "", new SKPSrc(SkOSPath::Join(path, file.c_str()))); } } else { push_src("skp", "", new SKPSrc(path)); } } static const char* const exts[] = { "bmp", "gif", "jpg", "jpeg", "png", "webp", "ktx", "astc", "wbmp", "ico", "BMP", "GIF", "JPG", "JPEG", "PNG", "WEBP", "KTX", "ASTC", "WBMP", "ICO", }; for (int i = 0; i < FLAGS_images.count(); i++) { const char* flag = FLAGS_images[i]; if (sk_isdir(flag)) { for (size_t j = 0; j < SK_ARRAY_COUNT(exts); j++) { SkOSFile::Iter it(flag, exts[j]); for (SkString file; it.next(&file); ) { SkString path = SkOSPath::Join(flag, file.c_str()); push_src("image", "decode", new ImageSrc(path)); // Decode entire image push_src("image", "subset", new ImageSrc(path, 2)); // Decode into 2x2 subsets if (codec_supported(exts[j])) { push_src("image", "codec", new CodecSrc(path, CodecSrc::kNormal_Mode)); push_src("image", "scanline", new CodecSrc(path, CodecSrc::kScanline_Mode)); } } } } else if (sk_exists(flag)) { // assume that FLAGS_images[i] is a valid image if it is a file. push_src("image", "decode", new ImageSrc(flag)); // Decode entire image. push_src("image", "subset", new ImageSrc(flag, 2)); // Decode into 2 x 2 subsets push_src("image", "codec", new CodecSrc(flag, CodecSrc::kNormal_Mode)); push_src("image", "scanline", new CodecSrc(flag, CodecSrc::kScanline_Mode)); } } } static GrGLStandard get_gpu_api() { if (FLAGS_gpuAPI.contains("gl")) { return kGL_GrGLStandard; } if (FLAGS_gpuAPI.contains("gles")) { return kGLES_GrGLStandard; } return kNone_GrGLStandard; } static void push_sink(const char* tag, Sink* s) { SkAutoTDelete sink(s); if (!FLAGS_config.contains(tag)) { return; } // Try a noop Src as a canary. If it fails, skip this sink. struct : public Src { Error draw(SkCanvas*) const override { return ""; } SkISize size() const override { return SkISize::Make(16, 16); } Name name() const override { return "noop"; } } noop; SkBitmap bitmap; SkDynamicMemoryWStream stream; SkString log; Error err = sink->draw(noop, &bitmap, &stream, &log); if (err.isFatal()) { SkDebugf("Skipping %s: %s\n", tag, err.c_str()); return; } Tagged& ts = gSinks.push_back(); ts.reset(sink.detach()); ts.tag = tag; } static bool gpu_supported() { #if SK_SUPPORT_GPU return FLAGS_gpu; #else return false; #endif } static Sink* create_sink(const char* tag) { #define SINK(t, sink, ...) if (0 == strcmp(t, tag)) { return new sink(__VA_ARGS__); } if (gpu_supported()) { typedef GrContextFactory Gr; const GrGLStandard api = get_gpu_api(); SINK("gpunull", GPUSink, Gr::kNull_GLContextType, api, 0, false, FLAGS_gpu_threading); SINK("gpudebug", GPUSink, Gr::kDebug_GLContextType, api, 0, false, FLAGS_gpu_threading); SINK("gpu", GPUSink, Gr::kNative_GLContextType, api, 0, false, FLAGS_gpu_threading); SINK("gpudft", GPUSink, Gr::kNative_GLContextType, api, 0, true, FLAGS_gpu_threading); SINK("msaa4", GPUSink, Gr::kNative_GLContextType, api, 4, false, FLAGS_gpu_threading); SINK("msaa16", GPUSink, Gr::kNative_GLContextType, api, 16, false, FLAGS_gpu_threading); SINK("nvprmsaa4", GPUSink, Gr::kNVPR_GLContextType, api, 4, false, FLAGS_gpu_threading); SINK("nvprmsaa16", GPUSink, Gr::kNVPR_GLContextType, api, 16, false, FLAGS_gpu_threading); #if SK_ANGLE SINK("angle", GPUSink, Gr::kANGLE_GLContextType, api, 0, false, FLAGS_gpu_threading); #endif #if SK_MESA SINK("mesa", GPUSink, Gr::kMESA_GLContextType, api, 0, false, FLAGS_gpu_threading); #endif } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK SINK("hwui", HWUISink); #endif if (FLAGS_cpu) { SINK("565", RasterSink, kRGB_565_SkColorType); SINK("8888", RasterSink, kN32_SkColorType); SINK("pdf", PDFSink); SINK("skp", SKPSink); SINK("svg", SVGSink); SINK("null", NullSink); SINK("xps", XPSSink); } #undef SINK return NULL; } static Sink* create_via(const char* tag, Sink* wrapped) { #define VIA(t, via, ...) if (0 == strcmp(t, tag)) { return new via(__VA_ARGS__); } VIA("pipe", ViaPipe, wrapped); VIA("serialize", ViaSerialization, wrapped); VIA("tiles", ViaTiles, 256, 256, NULL, wrapped); VIA("tiles_rt", ViaTiles, 256, 256, new SkRTreeFactory, wrapped); if (FLAGS_matrix.count() == 4) { SkMatrix m; m.reset(); m.setScaleX((SkScalar)atof(FLAGS_matrix[0])); m.setSkewX ((SkScalar)atof(FLAGS_matrix[1])); m.setSkewY ((SkScalar)atof(FLAGS_matrix[2])); m.setScaleY((SkScalar)atof(FLAGS_matrix[3])); VIA("matrix", ViaMatrix, m, wrapped); VIA("upright", ViaUpright, m, wrapped); } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK VIA("androidsdk", ViaAndroidSDK, wrapped); #endif #undef VIA return NULL; } static void gather_sinks() { for (int i = 0; i < FLAGS_config.count(); i++) { const char* config = FLAGS_config[i]; SkTArray parts; SkStrSplit(config, "-", &parts); Sink* sink = NULL; for (int i = parts.count(); i-- > 0;) { const char* part = parts[i].c_str(); Sink* next = (sink == NULL) ? create_sink(part) : create_via(part, sink); if (next == NULL) { SkDebugf("Skipping %s: Don't understand '%s'.\n", config, part); delete sink; sink = NULL; break; } sink = next; } if (sink) { push_sink(config, sink); } } } static bool match(const char* needle, const char* haystack) { return 0 == strcmp("_", needle) || NULL != strstr(haystack, needle); } static ImplicitString is_blacklisted(const char* sink, const char* src, const char* srcOptions, const char* name) { for (int i = 0; i < FLAGS_blacklist.count() - 2; i += 4) { if (match(FLAGS_blacklist[i+0], sink) && match(FLAGS_blacklist[i+1], src) && match(FLAGS_blacklist[i+2], srcOptions) && match(FLAGS_blacklist[i+3], name)) { return SkStringPrintf("%s %s %s %s", FLAGS_blacklist[i+0], FLAGS_blacklist[i+1], FLAGS_blacklist[i+2], FLAGS_blacklist[i+3]); } } return ""; } // The finest-grained unit of work we can run: draw a single Src into a single Sink, // report any errors, and perhaps write out the output: a .png of the bitmap, or a raw stream. struct Task { Task(const Tagged& src, const Tagged& sink) : src(src), sink(sink) {} const Tagged& src; const Tagged& sink; static void Run(Task* task) { SkString name = task->src->name(); SkString note; SkString whyBlacklisted = is_blacklisted(task->sink.tag, task->src.tag, task->src.options, name.c_str()); if (!whyBlacklisted.isEmpty()) { note.appendf(" (--blacklist %s)", whyBlacklisted.c_str()); } SkString log; WallTimer timer; timer.start(); if (!FLAGS_dryRun && whyBlacklisted.isEmpty()) { SkBitmap bitmap; SkDynamicMemoryWStream stream; start(task->sink.tag, task->src.tag, task->src.options, name.c_str()); Error err = task->sink->draw(*task->src, &bitmap, &stream, &log); if (!err.isEmpty()) { timer.end(); if (err.isFatal()) { fail(SkStringPrintf("%s %s %s %s: %s", task->sink.tag, task->src.tag, task->src.options, name.c_str(), err.c_str())); } else { note.appendf(" (skipped: %s)", err.c_str()); } done(timer.fWall, task->sink.tag, task->src.tag, task->src.options, name, note, log); return; } SkAutoTDelete data(stream.detachAsStream()); SkString md5; if (!FLAGS_writePath.isEmpty() || !FLAGS_readPath.isEmpty()) { SkMD5 hash; if (data->getLength()) { hash.writeStream(data, data->getLength()); data->rewind(); } else { hash.write(bitmap.getPixels(), bitmap.getSize()); } SkMD5::Digest digest; hash.finish(digest); for (int i = 0; i < 16; i++) { md5.appendf("%02x", digest.data[i]); } } if (!FLAGS_readPath.isEmpty() && !gGold.contains(Gold(task->sink.tag, task->src.tag, task->src.options, name, md5))) { fail(SkStringPrintf("%s not found for %s %s %s %s in %s", md5.c_str(), task->sink.tag, task->src.tag, task->src.options, name.c_str(), FLAGS_readPath[0])); } if (!FLAGS_writePath.isEmpty()) { const char* ext = task->sink->fileExtension(); if (data->getLength()) { WriteToDisk(*task, md5, ext, data, data->getLength(), NULL); SkASSERT(bitmap.drawsNothing()); } else if (!bitmap.drawsNothing()) { WriteToDisk(*task, md5, ext, NULL, 0, &bitmap); } } } timer.end(); done(timer.fWall, task->sink.tag, task->src.tag, task->src.options, name, note, log); } static void WriteToDisk(const Task& task, SkString md5, const char* ext, SkStream* data, size_t len, const SkBitmap* bitmap) { JsonWriter::BitmapResult result; result.name = task.src->name(); result.config = task.sink.tag; result.sourceType = task.src.tag; result.sourceOptions = task.src.options; result.ext = ext; result.md5 = md5; JsonWriter::AddBitmapResult(result); const char* dir = FLAGS_writePath[0]; if (0 == strcmp(dir, "@")) { // Needed for iOS. dir = FLAGS_resourcePath[0]; } sk_mkdir(dir); SkString path; if (FLAGS_nameByHash) { path = SkOSPath::Join(dir, result.md5.c_str()); path.append("."); path.append(ext); if (sk_exists(path.c_str())) { return; // Content-addressed. If it exists already, we're done. } } else { path = SkOSPath::Join(dir, task.sink.tag); sk_mkdir(path.c_str()); path = SkOSPath::Join(path.c_str(), task.src.tag); sk_mkdir(path.c_str()); if (strcmp(task.src.options, "") != 0) { path = SkOSPath::Join(path.c_str(), task.src.options); sk_mkdir(path.c_str()); } path = SkOSPath::Join(path.c_str(), task.src->name().c_str()); path.append("."); path.append(ext); } SkFILEWStream file(path.c_str()); if (!file.isValid()) { fail(SkStringPrintf("Can't open %s for writing.\n", path.c_str())); return; } if (bitmap) { // We can't encode A8 bitmaps as PNGs. Convert them to 8888 first. SkBitmap converted; if (bitmap->info().colorType() == kAlpha_8_SkColorType) { if (!bitmap->copyTo(&converted, kN32_SkColorType)) { fail("Can't convert A8 to 8888.\n"); return; } bitmap = &converted; } if (!SkImageEncoder::EncodeStream(&file, *bitmap, SkImageEncoder::kPNG_Type, 100)) { fail(SkStringPrintf("Can't encode PNG to %s.\n", path.c_str())); return; } } else { if (!file.writeStream(data, len)) { fail(SkStringPrintf("Can't write to %s.\n", path.c_str())); return; } } } }; // Run all tasks in the same enclave serially on the same thread. // They can't possibly run concurrently with each other. static void run_enclave(SkTArray* tasks) { for (int i = 0; i < tasks->count(); i++) { Task::Run(tasks->begin() + i); } } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Unit tests don't fit so well into the Src/Sink model, so we give them special treatment. static SkTDArray gThreadedTests, gGPUTests; static void gather_tests() { if (!FLAGS_src.contains("tests")) { return; } for (const skiatest::TestRegistry* r = skiatest::TestRegistry::Head(); r; r = r->next()) { // Despite its name, factory() is returning a reference to // link-time static const POD data. const skiatest::Test& test = r->factory(); if (SkCommandLineFlags::ShouldSkip(FLAGS_match, test.name)) { continue; } if (test.needsGpu && gpu_supported()) { (FLAGS_gpu_threading ? gThreadedTests : gGPUTests).push(test); } else if (!test.needsGpu && FLAGS_cpu) { gThreadedTests.push(test); } } } static void run_test(skiatest::Test* test) { struct : public skiatest::Reporter { void reportFailed(const skiatest::Failure& failure) override { fail(failure.toString()); JsonWriter::AddTestFailure(failure); } bool allowExtendedTest() const override { return FLAGS_pathOpsExtended; } bool verbose() const override { return FLAGS_veryVerbose; } } reporter; WallTimer timer; timer.start(); if (!FLAGS_dryRun) { start("unit", "test", "", test->name); GrContextFactory factory; test->proc(&reporter, &factory); } timer.end(); done(timer.fWall, "unit", "test", "", test->name, "", ""); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // If we're isolating all GPU-bound work to one thread (the default), this function runs all that. static void run_enclave_and_gpu_tests(SkTArray* tasks) { run_enclave(tasks); for (int i = 0; i < gGPUTests.count(); i++) { run_test(&gGPUTests[i]); } } // Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung. // This prints something every once in a while so that it knows we're still working. static void start_keepalive() { struct Loop { static void forever(void*) { for (;;) { static const int kSec = 300; #if defined(SK_BUILD_FOR_WIN) Sleep(kSec * 1000); #else sleep(kSec); #endif SkString running; { SkAutoMutexAcquire lock(gRunningMutex); for (int i = 0; i < gRunning.count(); i++) { running.appendf("\n\t%s", gRunning[i].c_str()); } } SkDebugf("\nCurrently running:%s\n", running.c_str()); } } }; static SkThread* intentionallyLeaked = new SkThread(Loop::forever); intentionallyLeaked->start(); } int dm_main(); int dm_main() { SetupCrashHandler(); SkAutoGraphics ag; SkTaskGroup::Enabler enabled(FLAGS_threads); if (FLAGS_leaks) { SkInstCountPrintLeaksOnExit(); } start_keepalive(); gather_gold(); gather_srcs(); gather_sinks(); gather_tests(); gPending = gSrcs.count() * gSinks.count() + gThreadedTests.count() + gGPUTests.count(); SkDebugf("%d srcs * %d sinks + %d tests == %d tasks\n", gSrcs.count(), gSinks.count(), gThreadedTests.count() + gGPUTests.count(), gPending); // We try to exploit as much parallelism as is safe. Most Src/Sink pairs run on any thread, // but Sinks that identify as part of a particular enclave run serially on a single thread. // CPU tests run on any thread. GPU tests depend on --gpu_threading. SkTArray enclaves[kNumEnclaves]; for (int j = 0; j < gSinks.count(); j++) { SkTArray& tasks = enclaves[gSinks[j]->enclave()]; for (int i = 0; i < gSrcs.count(); i++) { tasks.push_back(Task(gSrcs[i], gSinks[j])); } } SkTaskGroup tg; tg.batch(run_test, gThreadedTests.begin(), gThreadedTests.count()); for (int i = 0; i < kNumEnclaves; i++) { switch(i) { case kAnyThread_Enclave: tg.batch(Task::Run, enclaves[i].begin(), enclaves[i].count()); break; case kGPU_Enclave: tg.add(run_enclave_and_gpu_tests, &enclaves[i]); break; default: tg.add(run_enclave, &enclaves[i]); break; } } tg.wait(); // At this point we're back in single-threaded land. SkDebugf("\n"); if (gFailures.count() > 0) { SkDebugf("Failures:\n"); for (int i = 0; i < gFailures.count(); i++) { SkDebugf("\t%s\n", gFailures[i].c_str()); } SkDebugf("%d failures\n", gFailures.count()); return 1; } if (gPending > 0) { SkDebugf("Hrm, we didn't seem to run everything we intended to! Please file a bug.\n"); return 1; } return 0; } #if !defined(SK_BUILD_FOR_IOS) int main(int argc, char** argv) { SkCommandLineFlags::Parse(argc, argv); return dm_main(); } #endif