/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkTypes.h" #include "tests/Test.h" #include "include/gpu/GrTexture.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrProxyProvider.h" #include "src/gpu/GrResourceAllocator.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSurfaceProxyPriv.h" #include "src/gpu/GrTextureProxy.h" #include "include/core/SkSurface.h" struct ProxyParams { int fSize; GrRenderable fRenderable; GrColorType fColorType; SkBackingFit fFit; int fSampleCnt; SkBudgeted fBudgeted; // TODO: do we care about mipmapping }; static sk_sp make_deferred(GrProxyProvider* proxyProvider, const GrCaps* caps, const ProxyParams& p) { const GrBackendFormat format = caps->getDefaultBackendFormat(p.fColorType, p.fRenderable); GrSwizzle swizzle = caps->getReadSwizzle(format, p.fColorType); return proxyProvider->createProxy(format, {p.fSize, p.fSize}, swizzle, p.fRenderable, p.fSampleCnt, GrMipMapped::kNo, p.fFit, p.fBudgeted, GrProtected::kNo); } static sk_sp make_backend(GrContext* context, const ProxyParams& p, GrBackendTexture* backendTex) { GrProxyProvider* proxyProvider = context->priv().proxyProvider(); SkColorType skColorType = GrColorTypeToSkColorType(p.fColorType); SkASSERT(SkColorType::kUnknown_SkColorType != skColorType); *backendTex = context->createBackendTexture(p.fSize, p.fSize, skColorType, SkColors::kTransparent, GrMipMapped::kNo, GrRenderable::kNo, GrProtected::kNo); if (!backendTex->isValid()) { return nullptr; } return proxyProvider->wrapBackendTexture(*backendTex, p.fColorType, kBorrow_GrWrapOwnership, GrWrapCacheable::kNo, kRead_GrIOType); } static void cleanup_backend(GrContext* context, const GrBackendTexture& backendTex) { context->deleteBackendTexture(backendTex); } // Basic test that two proxies with overlapping intervals and compatible descriptors are // assigned different GrSurfaces. static void overlap_test(skiatest::Reporter* reporter, GrResourceProvider* resourceProvider, sk_sp p1, sk_sp p2, bool expectedResult) { GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, 1)); alloc.addInterval(p1.get(), 0, 4, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.addInterval(p2.get(), 1, 2, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(0); alloc.determineRecyclability(); int startIndex, stopIndex; GrResourceAllocator::AssignError error; alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); REPORTER_ASSERT(reporter, p1->peekSurface()); REPORTER_ASSERT(reporter, p2->peekSurface()); bool doTheBackingStoresMatch = p1->underlyingUniqueID() == p2->underlyingUniqueID(); REPORTER_ASSERT(reporter, expectedResult == doTheBackingStoresMatch); } // Test various cases when two proxies do not have overlapping intervals. // This mainly acts as a test of the ResourceAllocator's free pool. static void non_overlap_test(skiatest::Reporter* reporter, GrResourceProvider* resourceProvider, sk_sp p1, sk_sp p2, bool expectedResult) { GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, 1)); alloc.incOps(); alloc.incOps(); alloc.incOps(); alloc.incOps(); alloc.incOps(); alloc.incOps(); alloc.addInterval(p1.get(), 0, 2, GrResourceAllocator::ActualUse::kYes); alloc.addInterval(p2.get(), 3, 5, GrResourceAllocator::ActualUse::kYes); alloc.markEndOfOpsTask(0); alloc.determineRecyclability(); int startIndex, stopIndex; GrResourceAllocator::AssignError error; alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); REPORTER_ASSERT(reporter, p1->peekSurface()); REPORTER_ASSERT(reporter, p2->peekSurface()); bool doTheBackingStoresMatch = p1->underlyingUniqueID() == p2->underlyingUniqueID(); REPORTER_ASSERT(reporter, expectedResult == doTheBackingStoresMatch); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ResourceAllocatorTest, reporter, ctxInfo) { const GrCaps* caps = ctxInfo.grContext()->priv().caps(); GrProxyProvider* proxyProvider = ctxInfo.grContext()->priv().proxyProvider(); GrResourceProvider* resourceProvider = ctxInfo.grContext()->priv().resourceProvider(); struct TestCase { ProxyParams fP1; ProxyParams fP2; bool fExpectation; }; constexpr GrRenderable kRT = GrRenderable::kYes; constexpr GrRenderable kNotRT = GrRenderable::kNo; constexpr bool kShare = true; constexpr bool kDontShare = false; // Non-RT GrSurfaces are never recycled on some platforms. bool kConditionallyShare = resourceProvider->caps()->reuseScratchTextures(); const GrColorType kRGBA = GrColorType::kRGBA_8888; const GrColorType kAlpha = GrColorType::kAlpha_8; const SkBackingFit kE = SkBackingFit::kExact; const SkBackingFit kA = SkBackingFit::kApprox; const SkBudgeted kNotB = SkBudgeted::kNo; //-------------------------------------------------------------------------------------------- TestCase gOverlappingTests[] = { //---------------------------------------------------------------------------------------- // Two proxies with overlapping intervals and compatible descriptors should never share // RT version {{64, kRT, kRGBA, kA, 1, kNotB}, {64, kRT, kRGBA, kA, 1, kNotB}, kDontShare}, // non-RT version {{64, kNotRT, kRGBA, kA, 1, kNotB}, {64, kNotRT, kRGBA, kA, 1, kNotB}, kDontShare}, }; for (auto test : gOverlappingTests) { sk_sp p1 = make_deferred(proxyProvider, caps, test.fP1); sk_sp p2 = make_deferred(proxyProvider, caps, test.fP2); overlap_test(reporter, resourceProvider, std::move(p1), std::move(p2), test.fExpectation); } auto beFormat = caps->getDefaultBackendFormat(GrColorType::kRGBA_8888, GrRenderable::kYes); int k2 = ctxInfo.grContext()->priv().caps()->getRenderTargetSampleCount(2, beFormat); int k4 = ctxInfo.grContext()->priv().caps()->getRenderTargetSampleCount(4, beFormat); //-------------------------------------------------------------------------------------------- TestCase gNonOverlappingTests[] = { //---------------------------------------------------------------------------------------- // Two non-overlapping intervals w/ compatible proxies should share // both same size & approx {{64, kRT, kRGBA, kA, 1, kNotB}, {64, kRT, kRGBA, kA, 1, kNotB}, kShare}, {{64, kNotRT, kRGBA, kA, 1, kNotB}, {64, kNotRT, kRGBA, kA, 1, kNotB}, kConditionallyShare}, // diffs sizes but still approx {{64, kRT, kRGBA, kA, 1, kNotB}, {50, kRT, kRGBA, kA, 1, kNotB}, kShare}, {{64, kNotRT, kRGBA, kA, 1, kNotB}, {50, kNotRT, kRGBA, kA, 1, kNotB}, kConditionallyShare}, // sames sizes but exact {{64, kRT, kRGBA, kE, 1, kNotB}, {64, kRT, kRGBA, kE, 1, kNotB}, kShare}, {{64, kNotRT, kRGBA, kE, 1, kNotB}, {64, kNotRT, kRGBA, kE, 1, kNotB}, kConditionallyShare}, //---------------------------------------------------------------------------------------- // Two non-overlapping intervals w/ different exact sizes should not share {{56, kRT, kRGBA, kE, 1, kNotB}, {54, kRT, kRGBA, kE, 1, kNotB}, kDontShare}, // Two non-overlapping intervals w/ _very different_ approx sizes should not share {{255, kRT, kRGBA, kA, 1, kNotB}, {127, kRT, kRGBA, kA, 1, kNotB}, kDontShare}, // Two non-overlapping intervals w/ different MSAA sample counts should not share {{64, kRT, kRGBA, kA, k2, kNotB}, {64, kRT, kRGBA, kA, k4, kNotB}, k2 == k4}, // Two non-overlapping intervals w/ different configs should not share {{64, kRT, kRGBA, kA, 1, kNotB}, {64, kRT, kAlpha, kA, 1, kNotB}, kDontShare}, // Two non-overlapping intervals w/ different RT classifications should never share {{64, kRT, kRGBA, kA, 1, kNotB}, {64, kNotRT, kRGBA, kA, 1, kNotB}, kDontShare}, {{64, kNotRT, kRGBA, kA, 1, kNotB}, {64, kRT, kRGBA, kA, 1, kNotB}, kDontShare}, // Two non-overlapping intervals w/ different origins should share {{64, kRT, kRGBA, kA, 1, kNotB}, {64, kRT, kRGBA, kA, 1, kNotB}, kShare}, }; for (auto test : gNonOverlappingTests) { sk_sp p1 = make_deferred(proxyProvider, caps, test.fP1); sk_sp p2 = make_deferred(proxyProvider, caps, test.fP2); if (!p1 || !p2) { continue; // creation can fail (i.e., for msaa4 on iOS) } non_overlap_test(reporter, resourceProvider, std::move(p1), std::move(p2), test.fExpectation); } { // Wrapped backend textures should never be reused TestCase t[1] = { {{64, kNotRT, kRGBA, kE, 1, kNotB}, {64, kNotRT, kRGBA, kE, 1, kNotB}, kDontShare}}; GrBackendTexture backEndTex; sk_sp p1 = make_backend(ctxInfo.grContext(), t[0].fP1, &backEndTex); sk_sp p2 = make_deferred(proxyProvider, caps, t[0].fP2); non_overlap_test(reporter, resourceProvider, std::move(p1), std::move(p2), t[0].fExpectation); cleanup_backend(ctxInfo.grContext(), backEndTex); } } static void draw(GrContext* context) { SkImageInfo ii = SkImageInfo::Make(1024, 1024, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, ii, 1, kTopLeft_GrSurfaceOrigin, nullptr); SkCanvas* c = s->getCanvas(); c->clear(SK_ColorBLACK); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ResourceAllocatorStressTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); size_t maxBytes = context->getResourceCacheLimit(); context->setResourceCacheLimit(0); // We'll always be overbudget draw(context); draw(context); draw(context); draw(context); context->flush(); context->setResourceCacheLimit(maxBytes); } sk_sp make_lazy(GrProxyProvider* proxyProvider, const GrCaps* caps, const ProxyParams& p) { const auto format = caps->getDefaultBackendFormat(p.fColorType, p.fRenderable); SkBackingFit fit = p.fFit; SkISize dims = {p.fSize, p.fSize}; auto callback = [fit, dims, format, p](GrResourceProvider* resourceProvider) { sk_sp texture; if (fit == SkBackingFit::kApprox) { texture = resourceProvider->createApproxTexture(dims, format, p.fRenderable, p.fSampleCnt, GrProtected::kNo); } else { texture = resourceProvider->createTexture(dims, format, p.fRenderable, p.fSampleCnt, GrMipMapped::kNo, SkBudgeted::kNo, GrProtected::kNo); } return GrSurfaceProxy::LazyCallbackResult(std::move(texture)); }; GrInternalSurfaceFlags flags = GrInternalSurfaceFlags::kNone; GrSwizzle readSwizzle = caps->getReadSwizzle(format, p.fColorType); return proxyProvider->createLazyProxy( callback, format, dims, readSwizzle, p.fRenderable, p.fSampleCnt, GrMipMapped::kNo, GrMipMapsStatus::kNotAllocated, flags, p.fFit, p.fBudgeted, GrProtected::kNo, GrSurfaceProxy::UseAllocator::kYes); } // Set up so there are two opsTasks that need to be flushed but the resource allocator thinks // it is over budget. The two opsTasks should be flushed separately and the opsTask indices // returned from assign should be correct. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ResourceAllocatorOverBudgetTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); const GrCaps* caps = context->priv().caps(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrResourceProvider* resourceProvider = context->priv().resourceProvider(); size_t origMaxBytes = context->getResourceCacheLimit(); // Force the resource allocator to always believe it is over budget context->setResourceCacheLimit(0); const ProxyParams params = { 64, GrRenderable::kNo, GrColorType::kRGBA_8888, SkBackingFit::kExact, 1, SkBudgeted::kYes}; { sk_sp p1 = make_deferred(proxyProvider, caps, params); sk_sp p2 = make_deferred(proxyProvider, caps, params); sk_sp p3 = make_deferred(proxyProvider, caps, params); sk_sp p4 = make_deferred(proxyProvider, caps, params); GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, 2)); alloc.addInterval(p1.get(), 0, 0, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.addInterval(p2.get(), 1, 1, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(0); alloc.addInterval(p3.get(), 2, 2, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.addInterval(p4.get(), 3, 3, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(1); int startIndex, stopIndex; GrResourceAllocator::AssignError error; alloc.determineRecyclability(); alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); REPORTER_ASSERT(reporter, 0 == startIndex && 1 == stopIndex); alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); REPORTER_ASSERT(reporter, 1 == startIndex && 2 == stopIndex); } context->setResourceCacheLimit(origMaxBytes); } // This test is used to make sure we are tracking the current task index during the assign call in // the GrResourceAllocator. Specifically we can fall behind if we have intervals that don't // use the allocator. In this case we need to possibly increment the fCurOpsTaskIndex multiple times // to get in back in sync. We had a bug where we'd only every increment the index by one, // http://crbug.com/996610. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ResourceAllocatorCurOpsTaskIndexTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); const GrCaps* caps = context->priv().caps(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrResourceProvider* resourceProvider = context->priv().resourceProvider(); size_t origMaxBytes = context->getResourceCacheLimit(); // Force the resource allocator to always believe it is over budget context->setResourceCacheLimit(0); ProxyParams params; params.fFit = SkBackingFit::kExact; params.fColorType = GrColorType::kRGBA_8888; params.fRenderable = GrRenderable::kYes; params.fSampleCnt = 1; params.fSize = 100; params.fBudgeted = SkBudgeted::kYes; sk_sp proxy1 = make_deferred(proxyProvider, caps, params); if (!proxy1) { return; } sk_sp proxy2 = make_deferred(proxyProvider, caps, params); if (!proxy2) { return; } // Wrapped proxy that will be ignored by the resourceAllocator. We use this to try and get the // resource allocator fCurOpsTaskIndex to fall behind what it really should be. GrBackendTexture backEndTex; sk_sp proxyWrapped = make_backend(ctxInfo.grContext(), params, &backEndTex); if (!proxyWrapped) { return; } // Same as above, but we actually need to have at least two intervals that don't go through the // resource allocator to expose the index bug. GrBackendTexture backEndTex2; sk_sp proxyWrapped2 = make_backend(ctxInfo.grContext(), params, &backEndTex2); if (!proxyWrapped2) { cleanup_backend(ctxInfo.grContext(), backEndTex); return; } GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, 4)); alloc.addInterval(proxyWrapped.get(), 0, 0, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(0); alloc.addInterval(proxyWrapped2.get(), 1, 1, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(1); alloc.addInterval(proxy1.get(), 2, 2, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(2); // We want to force the resource allocator to do a intermediateFlush for the previous interval. // But if it is the resource allocator is at the of its list of intervals it skips the // intermediate flush call, so we add another interval here so it is not skipped. alloc.addInterval(proxy2.get(), 3, 3, GrResourceAllocator::ActualUse::kYes); alloc.incOps(); alloc.markEndOfOpsTask(3); int startIndex, stopIndex; GrResourceAllocator::AssignError error; alloc.determineRecyclability(); alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); // The original bug in the allocator here would return a stopIndex of 2 since it would have only // incremented its fCurOpsTaskIndex once instead of the needed two times to skip the first two // unused intervals. REPORTER_ASSERT(reporter, 0 == startIndex && 3 == stopIndex); alloc.assign(&startIndex, &stopIndex, &error); REPORTER_ASSERT(reporter, GrResourceAllocator::AssignError::kNoError == error); REPORTER_ASSERT(reporter, 3 == startIndex && 4 == stopIndex); cleanup_backend(ctxInfo.grContext(), backEndTex); cleanup_backend(ctxInfo.grContext(), backEndTex2); context->setResourceCacheLimit(origMaxBytes); }