/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkCanvas.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkScalar.h" namespace { // Concave test void test_concave(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->translate(0, 0); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(80), SkIntToScalar(20)) .lineTo(SkIntToScalar(30), SkIntToScalar(30)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); } // Reverse concave test void test_reverse_concave(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 0); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)) .lineTo(SkIntToScalar(30), SkIntToScalar(30)) .lineTo(SkIntToScalar(80), SkIntToScalar(20)); canvas->drawPath(path, paint); canvas->restore(); } // Bowtie (intersection) void test_bowtie(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 0); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(80), SkIntToScalar(80)) .lineTo(SkIntToScalar(80), SkIntToScalar(20)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // "fake" bowtie (concave, but no intersection) void test_fake_bowtie(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(300, 0); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(50), SkIntToScalar(40)) .lineTo(SkIntToScalar(80), SkIntToScalar(20)) .lineTo(SkIntToScalar(80), SkIntToScalar(80)) .lineTo(SkIntToScalar(50), SkIntToScalar(60)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // Bowtie with a smaller right hand lobe. The outer vertex of the left hand // lobe intrudes into the interior of the right hand lobe. void test_intruding_vertex(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(400, 0); path.setIsVolatile(true); path.moveTo(20, 20) .lineTo(50, 50) .lineTo(68, 20) .lineTo(68, 80) .lineTo(50, 50) .lineTo(20, 80); canvas->drawPath(path, paint); canvas->restore(); } // A shape with an edge that becomes inverted on AA stroking and that also contains // a repeated start/end vertex. void test_inversion_repeat_vertex(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(400, 100); path.setIsVolatile(true); path.moveTo(80, 50) .lineTo(40, 80) .lineTo(60, 20) .lineTo(20, 20) .lineTo(39.99f, 80) .lineTo(80, 50); canvas->drawPath(path, paint); canvas->restore(); } // Fish test (intersection/concave) void test_fish(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(0, 100); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(80), SkIntToScalar(80)) .lineTo(SkIntToScalar(70), SkIntToScalar(50)) .lineTo(SkIntToScalar(80), SkIntToScalar(20)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)) .lineTo(SkIntToScalar(0), SkIntToScalar(50)); canvas->drawPath(path, paint); canvas->restore(); } // Overlapping "Fast-forward" icon: tests coincidence of inner and outer // vertices generated by intersection. void test_fast_forward(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 100); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)) .lineTo(SkIntToScalar(60), SkIntToScalar(50)) .lineTo(SkIntToScalar(20), SkIntToScalar(80)) .moveTo(SkIntToScalar(40), SkIntToScalar(20)) .lineTo(SkIntToScalar(40), SkIntToScalar(80)) .lineTo(SkIntToScalar(80), SkIntToScalar(50)); canvas->drawPath(path, paint); canvas->restore(); } // Square polygon with a square hole. void test_hole(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 100); path.addPoly({{20,20}, {80,20}, {80,80}, {20,80}}, false) .addPoly({{30,30}, {30,70}, {70,70}, {70,30}}, false); canvas->drawPath(path, paint); canvas->restore(); } // Star test (self-intersecting) void test_star(SkCanvas* canvas, const SkPaint& paint) { canvas->save(); canvas->translate(300, 100); canvas->drawPath(SkPath().addPoly({{30,20}, {50,80}, {70,20}, {20,57}, {80,57}}, false), paint); canvas->restore(); } // Exercise a case where the intersection is below a bottom edge. void test_twist(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); path.moveTo( 0.5, 6); path.lineTo(5.8070392608642578125, 6.4612660408020019531); path.lineTo(-2.9186885356903076172, 2.811046600341796875); path.lineTo(0.49999994039535522461, -1.4124038219451904297); canvas->translate(420, 220); canvas->scale(10, 10); canvas->drawPath(path, paint); canvas->restore(); } // Stairstep with repeated vert (intersection) void test_stairstep(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(0, 200); path.moveTo(SkIntToScalar(50), SkIntToScalar(50)); path.lineTo(SkIntToScalar(50), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); path.lineTo(SkIntToScalar(50), SkIntToScalar(50)); path.lineTo(SkIntToScalar(20), SkIntToScalar(50)); path.lineTo(SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } void test_stairstep2(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 200); path.moveTo(20, 60); path.lineTo(35, 80); path.lineTo(50, 60); path.lineTo(65, 80); path.lineTo(80, 60); canvas->drawPath(path, paint); canvas->restore(); } // Overlapping segments void test_overlapping(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 200); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(80), SkIntToScalar(80)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(30)); canvas->drawPath(path, paint); canvas->restore(); } // Two "island" triangles inside a containing rect. // This exercises the partnering code in the tessellator. void test_partners(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(300, 200); path.moveTo(20, 80); path.lineTo(80, 80); path.lineTo(80, 20); path.lineTo(20, 20); path.moveTo(30, 30); path.lineTo(45, 50); path.lineTo(30, 70); path.moveTo(70, 30); path.lineTo(70, 70); path.lineTo(55, 50); canvas->drawPath(path, paint); canvas->restore(); } // A split edge causes one half to be merged to zero winding (destroyed). // Test that the other half of the split doesn't also get zero winding. void test_winding_merged_to_zero(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(400, 350); path.moveTo(20, 80); path.moveTo(70, -0.000001f); path.lineTo(70, 0.0); path.lineTo(60, -30.0); path.lineTo(40, 20.0); path.moveTo(50, 50.0); path.lineTo(50, -50.0); path.lineTo(10, 50.0); canvas->drawPath(path, paint); canvas->restore(); } // Monotone test 1 (point in the middle) void test_monotone_1(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(0, 300); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.quadTo(SkIntToScalar(20), SkIntToScalar(50), SkIntToScalar(80), SkIntToScalar(50)); path.quadTo(SkIntToScalar(20), SkIntToScalar(50), SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // Monotone test 2 (point at the top) void test_monotone_2(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 300); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(30)); path.quadTo(SkIntToScalar(20), SkIntToScalar(20), SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // Monotone test 3 (point at the bottom) void test_monotone_3(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 300); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(80), SkIntToScalar(70)); path.quadTo(SkIntToScalar(20), SkIntToScalar(80), SkIntToScalar(20), SkIntToScalar(20)); canvas->drawPath(path, paint); canvas->restore(); } // Monotone test 4 (merging of two monotones) void test_monotone_4(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(300, 300); path.moveTo(80, 25); path.lineTo(50, 39); path.lineTo(20, 25); path.lineTo(40, 45); path.lineTo(70, 50); path.lineTo(80, 80); canvas->drawPath(path, paint); canvas->restore(); } // Monotone test 5 (aborted merging of two monotones) void test_monotone_5(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(0, 400); path.moveTo(50, 20); path.lineTo(80, 80); path.lineTo(50, 50); path.lineTo(20, 80); canvas->drawPath(path, paint); canvas->restore(); } // Degenerate intersection test void test_degenerate(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 400); path.moveTo(50, 20); path.lineTo(70, 30); path.lineTo(20, 50); path.moveTo(50, 20); path.lineTo(80, 80); path.lineTo(50, 80); canvas->drawPath(path, paint); canvas->restore(); } // Two triangles with a coincident edge. void test_coincident_edge(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 400); path.moveTo(80, 20); path.lineTo(80, 80); path.lineTo(20, 80); path.moveTo(20, 20); path.lineTo(80, 80); path.lineTo(20, 80); canvas->drawPath(path, paint); canvas->restore(); } // Bowtie with a coincident triangle (one triangle vertex coincident with the // bowtie's intersection). void test_bowtie_coincident_triangle(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(300, 400); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(80)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); path.lineTo(SkIntToScalar(20), SkIntToScalar(80)); path.moveTo(SkIntToScalar(50), SkIntToScalar(50)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // Collinear outer boundary edges. In the edge-AA codepath, this creates an overlap region // which contains a boundary edge. It can't be removed, but it must have the correct winding. void test_collinear_outer_boundary_edge(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(400, 400); path.moveTo(20, 20); path.lineTo(20, 50); path.lineTo(50, 50); path.moveTo(80, 50); path.lineTo(50, 50); path.lineTo(80, 20); canvas->drawPath(path, paint); canvas->restore(); } // Coincident edges (big ones first, coincident vert on top). void test_coincident_edges_1(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(0, 500); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(80)); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(50), SkIntToScalar(50)); path.lineTo(SkIntToScalar(20), SkIntToScalar(50)); canvas->drawPath(path, paint); canvas->restore(); } // Coincident edges (small ones first, coincident vert on top). void test_coincident_edges_2(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(100, 500); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(50), SkIntToScalar(50)); path.lineTo(SkIntToScalar(20), SkIntToScalar(50)); path.moveTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(80)); canvas->drawPath(path, paint); canvas->restore(); } // Coincident edges (small ones first, coincident vert on bottom). void test_coincident_edges_3(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(200, 500); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(50)); path.lineTo(SkIntToScalar(50), SkIntToScalar(50)); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); canvas->drawPath(path, paint); canvas->restore(); } // Coincident edges (big ones first, coincident vert on bottom). void test_coincident_edges_4(SkCanvas* canvas, const SkPaint& paint) { SkPath path; canvas->save(); canvas->translate(300, 500); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(20)); path.lineTo(SkIntToScalar(80), SkIntToScalar(20)); path.moveTo(SkIntToScalar(20), SkIntToScalar(80)); path.lineTo(SkIntToScalar(20), SkIntToScalar(50)); path.lineTo(SkIntToScalar(50), SkIntToScalar(50)); canvas->drawPath(path, paint); canvas->restore(); } }; DEF_SIMPLE_GM(concavepaths, canvas, 500, 600) { SkPaint paint; paint.setAntiAlias(true); paint.setStyle(SkPaint::kFill_Style); test_concave(canvas, paint); test_reverse_concave(canvas, paint); test_bowtie(canvas, paint); test_fake_bowtie(canvas, paint); test_intruding_vertex(canvas, paint); test_fish(canvas, paint); test_fast_forward(canvas, paint); test_hole(canvas, paint); test_star(canvas, paint); test_twist(canvas, paint); test_inversion_repeat_vertex(canvas, paint); test_stairstep(canvas, paint); test_stairstep2(canvas, paint); test_overlapping(canvas, paint); test_partners(canvas, paint); test_winding_merged_to_zero(canvas, paint); test_monotone_1(canvas, paint); test_monotone_2(canvas, paint); test_monotone_3(canvas, paint); test_monotone_4(canvas, paint); test_monotone_5(canvas, paint); test_degenerate(canvas, paint); test_coincident_edge(canvas, paint); test_bowtie_coincident_triangle(canvas, paint); test_collinear_outer_boundary_edge(canvas, paint); test_coincident_edges_1(canvas, paint); test_coincident_edges_2(canvas, paint); test_coincident_edges_3(canvas, paint); test_coincident_edges_4(canvas, paint); }