/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #include "sk_tool_utils.h" #include "SkGradientShader.h" #include "SkImagePriv.h" #include "SkSurface.h" #include "SkVertices.h" static const int gRectSize = 50; static const SkScalar gScalarSize = SkIntToScalar(gRectSize); static const int gTestWidth = 700; static const int gTestHeight = 300; struct CellRenderer { virtual void draw(SkCanvas* canvas) = 0; virtual const char* label() = 0; virtual ~CellRenderer() {} }; struct PaintColorCellRenderer : public CellRenderer { PaintColorCellRenderer(SkColor color) : fColor(color) {} void draw(SkCanvas* canvas) override { canvas->drawColor(fColor); } const char* label() override { return "Paint Color"; } protected: SkColor fColor; }; struct BitmapCellRenderer : public CellRenderer { BitmapCellRenderer(SkColor color, SkFilterQuality quality, float scale = 1.0f) : fQuality(quality) { int scaledSize = sk_float_round2int(scale * gRectSize); fBitmap.allocPixels(SkImageInfo::MakeS32(scaledSize, scaledSize, kPremul_SkAlphaType)); fBitmap.eraseColor(color); fBitmap.setImmutable(); const char* qualityNames[] = { "None", "Low", "Medium", "High" }; fLabel = SkStringPrintf("Bitmap (%s)", qualityNames[quality]); } void draw(SkCanvas* canvas) override { SkPaint paint; paint.setFilterQuality(fQuality); canvas->drawBitmapRect(fBitmap, SkRect::MakeIWH(gRectSize, gRectSize), &paint); } const char* label() override { return fLabel.c_str(); } protected: SkFilterQuality fQuality; SkBitmap fBitmap; SkString fLabel; }; struct GradientCellRenderer : public CellRenderer { GradientCellRenderer(SkColor colorOne, SkColor colorTwo, bool manyStops) { fColors[0] = colorOne; fColors[1] = colorTwo; fManyStops = manyStops; } void draw(SkCanvas* canvas) override { SkPoint points[2] = { SkPoint::Make(0, 0), SkPoint::Make(0, gScalarSize) }; SkPaint paint; if (fManyStops) { SkColor colors[4] ={ fColors[0], fColors[0], fColors[1], fColors[1] }; paint.setShader(SkGradientShader::MakeLinear(points, colors, nullptr, 4, SkShader::kClamp_TileMode)); } else { paint.setShader(SkGradientShader::MakeLinear(points, fColors, nullptr, 2, SkShader::kClamp_TileMode)); } canvas->drawPaint(paint); } const char* label() override { return "Linear Gradient"; } protected: SkColor fColors[2]; bool fManyStops; }; struct VerticesCellRenderer : public CellRenderer { VerticesCellRenderer(SkColor colorOne, SkColor colorTwo) { fColors[0] = fColors[1] = colorOne; fColors[2] = fColors[3] = colorTwo; } void draw(SkCanvas* canvas) override { SkPaint paint; SkPoint vertices[4] = { SkPoint::Make(0, 0), SkPoint::Make(gScalarSize, 0), SkPoint::Make(gScalarSize, gScalarSize), SkPoint::Make(0, gScalarSize) }; canvas->drawVertices(SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, vertices, nullptr, fColors), SkBlendMode::kModulate, paint); } const char* label() override { return "Vertices"; } protected: SkColor fColors[4]; }; static void draw_gamut_grid(SkCanvas* canvas, SkTArray>& renderers) { // We want our colors in our wide gamut to be obviously visibly distorted from sRGB, so we use // Wide Gamut RGB (with sRGB gamma, for HW acceleration) as the working space for this test: const float gWideGamutRGB_toXYZD50[]{ 0.7161046f, 0.1009296f, 0.1471858f, // -> X 0.2581874f, 0.7249378f, 0.0168748f, // -> Y 0.0000000f, 0.0517813f, 0.7734287f, // -> Z }; SkMatrix44 wideGamutRGB_toXYZD50; wideGamutRGB_toXYZD50.set3x3RowMajorf(gWideGamutRGB_toXYZD50); // Use the original canvas' color type, but account for gamma requirements SkImageInfo origInfo = canvas->imageInfo(); sk_sp srgbCS; sk_sp wideCS; switch (origInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: srgbCS = SkColorSpace::MakeSRGB(); wideCS = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, wideGamutRGB_toXYZD50); break; case kRGBA_F16_SkColorType: case kRGBA_F32_SkColorType: srgbCS = SkColorSpace::MakeSRGBLinear(); wideCS = SkColorSpace::MakeRGB(SkColorSpace::kLinear_RenderTargetGamma, wideGamutRGB_toXYZD50); break; default: return; } SkASSERT(srgbCS); SkASSERT(wideCS); // Make our two working surfaces (one sRGB, one Wide) SkImageInfo srgbGamutInfo = SkImageInfo::Make(gRectSize, gRectSize, origInfo.colorType(), kPremul_SkAlphaType, srgbCS); SkImageInfo wideGamutInfo = SkImageInfo::Make(gRectSize, gRectSize, origInfo.colorType(), kPremul_SkAlphaType, wideCS); sk_sp srgbGamutSurface = canvas->makeSurface(srgbGamutInfo); sk_sp wideGamutSurface = canvas->makeSurface(wideGamutInfo); if (!srgbGamutSurface || !wideGamutSurface) { return; } SkCanvas* srgbGamutCanvas = srgbGamutSurface->getCanvas(); SkCanvas* wideGamutCanvas = wideGamutSurface->getCanvas(); SkPaint textPaint; textPaint.setAntiAlias(true); textPaint.setColor(SK_ColorWHITE); sk_tool_utils::set_portable_typeface(&textPaint); SkScalar x = 0, y = 0; SkScalar textHeight = textPaint.getFontSpacing(); for (const auto& renderer : renderers) { srgbGamutCanvas->clear(SK_ColorBLACK); renderer->draw(srgbGamutCanvas); wideGamutCanvas->clear(SK_ColorBLACK); renderer->draw(wideGamutCanvas); canvas->drawString(renderer->label(), x, y + textHeight, textPaint); // Re-interpret the off-screen images, so we can see the raw data (eg, Wide gamut squares // will look desaturated, relative to sRGB). auto srgbImage = srgbGamutSurface->makeImageSnapshot(); srgbImage = SkImageMakeRasterCopyAndAssignColorSpace(srgbImage.get(), origInfo.colorSpace()); canvas->drawImage(srgbImage, x, y + textHeight + 5); x += (gScalarSize + 1); auto wideImage = wideGamutSurface->makeImageSnapshot(); wideImage = SkImageMakeRasterCopyAndAssignColorSpace(wideImage.get(), origInfo.colorSpace()); canvas->drawImage(wideImage, x, y + textHeight + 5); x += (gScalarSize + 10); if (x + (2 * gScalarSize + 1) > gTestWidth) { x = 0; y += (textHeight + gScalarSize + 10); } } } DEF_SIMPLE_GM_BG(gamut, canvas, gTestWidth, gTestHeight, SK_ColorBLACK) { SkTArray> renderers; // sRGB primaries, rendered as paint color renderers.emplace_back(new PaintColorCellRenderer(SK_ColorRED)); renderers.emplace_back(new PaintColorCellRenderer(SK_ColorGREEN)); // sRGB primaries, rendered as bitmaps renderers.emplace_back(new BitmapCellRenderer(SK_ColorRED, kNone_SkFilterQuality)); renderers.emplace_back(new BitmapCellRenderer(SK_ColorGREEN, kLow_SkFilterQuality)); // Larger bitmap to trigger mipmaps renderers.emplace_back(new BitmapCellRenderer(SK_ColorRED, kMedium_SkFilterQuality, 2.0f)); // Smaller bitmap to trigger bicubic renderers.emplace_back(new BitmapCellRenderer(SK_ColorGREEN, kHigh_SkFilterQuality, 0.5f)); // Various gradients involving sRGB primaries and white/black // First with just two stops (implemented with uniforms on GPU) renderers.emplace_back(new GradientCellRenderer(SK_ColorRED, SK_ColorGREEN, false)); renderers.emplace_back(new GradientCellRenderer(SK_ColorGREEN, SK_ColorBLACK, false)); renderers.emplace_back(new GradientCellRenderer(SK_ColorGREEN, SK_ColorWHITE, false)); // ... and then with four stops (implemented with textures on GPU) renderers.emplace_back(new GradientCellRenderer(SK_ColorRED, SK_ColorGREEN, true)); renderers.emplace_back(new GradientCellRenderer(SK_ColorGREEN, SK_ColorBLACK, true)); renderers.emplace_back(new GradientCellRenderer(SK_ColorGREEN, SK_ColorWHITE, true)); // Vertex colors renderers.emplace_back(new VerticesCellRenderer(SK_ColorRED, SK_ColorRED)); renderers.emplace_back(new VerticesCellRenderer(SK_ColorRED, SK_ColorGREEN)); draw_gamut_grid(canvas, renderers); }