/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorSpace.h" #include "include/core/SkDeferredDisplayList.h" #include "include/core/SkDeferredDisplayListRecorder.h" #include "include/core/SkImage.h" #include "include/core/SkImageInfo.h" #include "include/core/SkPaint.h" #include "include/core/SkPromiseImageTexture.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceCharacterization.h" #include "include/core/SkSurfaceProps.h" #include "include/core/SkTypes.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrContextThreadSafeProxy.h" #include "include/gpu/GrDirectContext.h" #include "include/gpu/GrRecordingContext.h" #include "include/gpu/GrTypes.h" #include "include/gpu/gl/GrGLTypes.h" #include "include/private/GrTypesPriv.h" #include "src/core/SkDeferredDisplayListPriv.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrRenderTargetProxy.h" #include "src/gpu/GrTextureProxy.h" #include "src/gpu/gl/GrGLDefines.h" #include "src/image/SkImage_GpuBase.h" #include "src/image/SkSurface_Gpu.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/gpu/BackendSurfaceFactory.h" #include "tools/gpu/GrContextFactory.h" #include "tools/gpu/ManagedBackendTexture.h" #include "tools/gpu/ProxyUtils.h" #include #include #include #ifdef SK_VULKAN #include "src/gpu/vk/GrVkCaps.h" #include "src/gpu/vk/GrVkSecondaryCBDrawContext.h" #endif class SurfaceParameters { public: static const int kNumParams = 13; static const int kFBO0Count = 9; static const int kVkSCBCount = 12; SurfaceParameters(GrRecordingContext* rContext) : fBackend(rContext->backend()) , fCanBeProtected(false) , fWidth(64) , fHeight(64) , fOrigin(kTopLeft_GrSurfaceOrigin) , fColorType(kRGBA_8888_SkColorType) , fColorSpace(SkColorSpace::MakeSRGB()) , fSampleCount(1) , fSurfaceProps(0x0, kUnknown_SkPixelGeometry) , fShouldCreateMipMaps(true) , fUsesGLFBO0(false) , fIsTextureable(true) , fIsProtected(GrProtected::kNo) , fVkRTSupportsInputAttachment(false) , fForVulkanSecondaryCommandBuffer(false) { #ifdef SK_VULKAN if (rContext->backend() == GrBackendApi::kVulkan) { auto vkCaps = static_cast(rContext->priv().caps()); fCanBeProtected = vkCaps->supportsProtectedMemory(); if (fCanBeProtected) { fIsProtected = GrProtected::kYes; } } #endif if (!rContext->priv().caps()->mipmapSupport()) { fShouldCreateMipMaps = false; } } int sampleCount() const { return fSampleCount; } void setColorType(SkColorType ct) { fColorType = ct; } SkColorType colorType() const { return fColorType; } void setColorSpace(sk_sp cs) { fColorSpace = std::move(cs); } void disableTextureability() { fIsTextureable = false; fShouldCreateMipMaps = false; } void setShouldCreateMipMaps(bool shouldCreateMipMaps) { fShouldCreateMipMaps = shouldCreateMipMaps; } void setVkRTInputAttachmentSupport(bool inputSupport) { fVkRTSupportsInputAttachment = inputSupport; } void setForVulkanSecondaryCommandBuffer(bool forVkSCB) { fForVulkanSecondaryCommandBuffer = forVkSCB; } // Modify the SurfaceParameters in just one way. Returns false if the requested modification had // no effect. bool modify(int i) { bool changed = false; auto set = [&changed](auto& var, auto value) { if (var != value) { changed = true; } var = value; }; switch (i) { case 0: set(fWidth, 63); break; case 1: set(fHeight, 63); break; case 2: set(fOrigin, kBottomLeft_GrSurfaceOrigin); break; case 3: set(fColorType, kRGBA_F16_SkColorType); break; case 4: // This just needs to be a colorSpace different from that returned by MakeSRGB(). // In this case we just change the gamut. set(fColorSpace, SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kAdobeRGB)); break; case 5: set(fSampleCount, 4); break; case 6: set(fSurfaceProps, SkSurfaceProps(0x0, kRGB_H_SkPixelGeometry)); break; case 7: set(fSurfaceProps, SkSurfaceProps(SkSurfaceProps::kUseDeviceIndependentFonts_Flag, kUnknown_SkPixelGeometry)); break; case 8: set(fShouldCreateMipMaps, false); break; case 9: if (GrBackendApi::kOpenGL == fBackend) { set(fUsesGLFBO0, true); set(fShouldCreateMipMaps, false); // needs to changed in tandem w/ textureability set(fIsTextureable, false); } break; case 10: set(fShouldCreateMipMaps, false); // needs to changed in tandem w/ textureability set(fIsTextureable, false); break; case 11: if (fCanBeProtected) { set(fIsProtected, GrProtected(!static_cast(fIsProtected))); } break; case 12: if (GrBackendApi::kVulkan == fBackend) { set(fForVulkanSecondaryCommandBuffer, true); set(fUsesGLFBO0, false); set(fShouldCreateMipMaps, false); // needs to changed in tandem w/ textureability set(fIsTextureable, false); set(fVkRTSupportsInputAttachment, false); } break; } return changed; } SkSurfaceCharacterization createCharacterization(GrDirectContext* dContext) const { size_t maxResourceBytes = dContext->getResourceCacheLimit(); if (!dContext->colorTypeSupportedAsSurface(fColorType)) { return SkSurfaceCharacterization(); } // Note that Ganesh doesn't make use of the SkImageInfo's alphaType SkImageInfo ii = SkImageInfo::Make(fWidth, fHeight, fColorType, kPremul_SkAlphaType, fColorSpace); GrBackendFormat backendFormat = dContext->defaultBackendFormat(fColorType, GrRenderable::kYes); if (!backendFormat.isValid()) { return SkSurfaceCharacterization(); } SkSurfaceCharacterization c = dContext->threadSafeProxy()->createCharacterization( maxResourceBytes, ii, backendFormat, fSampleCount, fOrigin, fSurfaceProps, fShouldCreateMipMaps, fUsesGLFBO0, fIsTextureable, fIsProtected, fVkRTSupportsInputAttachment, fForVulkanSecondaryCommandBuffer); return c; } // Create a DDL whose characterization captures the current settings sk_sp createDDL(GrDirectContext* dContext) const { SkSurfaceCharacterization c = this->createCharacterization(dContext); SkAssertResult(c.isValid()); SkDeferredDisplayListRecorder r(c); SkCanvas* canvas = r.getCanvas(); if (!canvas) { return nullptr; } canvas->drawRect(SkRect::MakeXYWH(10, 10, 10, 10), SkPaint()); return r.detach(); } // Create the surface with the current set of parameters sk_sp make(GrDirectContext* dContext) const { const SkSurfaceCharacterization c = this->createCharacterization(dContext); #ifdef SK_GL if (fUsesGLFBO0) { if (GrBackendApi::kOpenGL != dContext->backend()) { return nullptr; } GrGLFramebufferInfo fboInfo; fboInfo.fFBOID = 0; fboInfo.fFormat = GR_GL_RGBA8; static constexpr int kStencilBits = 8; GrBackendRenderTarget backendRT(fWidth, fHeight, 1, kStencilBits, fboInfo); if (!backendRT.isValid()) { return nullptr; } sk_sp result = SkSurface::MakeFromBackendRenderTarget(dContext, backendRT, fOrigin, fColorType, fColorSpace, &fSurfaceProps); SkASSERT(result->isCompatible(c)); return result; } #endif // We can't make SkSurfaces for vulkan secondary command buffers. if (fForVulkanSecondaryCommandBuffer) { return nullptr; } sk_sp surface; if (fIsTextureable) { surface = sk_gpu_test::MakeBackendTextureSurface(dContext, {fWidth, fHeight}, fOrigin, fSampleCount, fColorType, fColorSpace, GrMipmapped(fShouldCreateMipMaps), fIsProtected, &fSurfaceProps); } else { // Create a surface w/ the current parameters but make it non-textureable SkASSERT(!fShouldCreateMipMaps); surface = sk_gpu_test::MakeBackendRenderTargetSurface(dContext, {fWidth, fHeight}, fOrigin, fSampleCount, fColorType, fColorSpace, fIsProtected, &fSurfaceProps); } if (!surface) { SkASSERT(!c.isValid()); return nullptr; } GrBackendTexture texture = surface->getBackendTexture(SkSurface::kFlushRead_BackendHandleAccess); if (texture.isValid()) { SkASSERT(c.isCompatible(texture)); } SkASSERT(c.isValid()); SkASSERT(surface->isCompatible(c)); return surface; } #ifdef SK_VULKAN sk_sp makeVkSCB(GrDirectContext* dContext) { const SkSurfaceCharacterization c = this->createCharacterization(dContext); SkImageInfo imageInfo = SkImageInfo::Make({fWidth, fHeight}, {fColorType, kPremul_SkAlphaType, fColorSpace}); GrVkDrawableInfo vkInfo; // putting in a bunch of placeholder values here vkInfo.fSecondaryCommandBuffer = (VkCommandBuffer)1; vkInfo.fColorAttachmentIndex = 0; vkInfo.fCompatibleRenderPass = (VkRenderPass)1; vkInfo.fFormat = VK_FORMAT_R8G8B8A8_UNORM; vkInfo.fDrawBounds = nullptr; vkInfo.fImage = (VkImage)1; return GrVkSecondaryCBDrawContext::Make(dContext, imageInfo, vkInfo, &fSurfaceProps); } #endif private: GrBackendApi fBackend; bool fCanBeProtected; int fWidth; int fHeight; GrSurfaceOrigin fOrigin; SkColorType fColorType; sk_sp fColorSpace; int fSampleCount; SkSurfaceProps fSurfaceProps; bool fShouldCreateMipMaps; bool fUsesGLFBO0; bool fIsTextureable; GrProtected fIsProtected; bool fVkRTSupportsInputAttachment; bool fForVulkanSecondaryCommandBuffer; }; // Test out operator== && operator!= DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLOperatorEqTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); for (int i = -1; i < SurfaceParameters::kNumParams; ++i) { SurfaceParameters params1(context); bool didModify1 = i >= 0 && params1.modify(i); SkSurfaceCharacterization char1 = params1.createCharacterization(context); if (!char1.isValid()) { continue; // can happen on some platforms (ChromeOS) } for (int j = -1; j < SurfaceParameters::kNumParams; ++j) { SurfaceParameters params2(context); bool didModify2 = j >= 0 && params2.modify(j); SkSurfaceCharacterization char2 = params2.createCharacterization(context); if (!char2.isValid()) { continue; // can happen on some platforms (ChromeOS) } if (i == j || (!didModify1 && !didModify2)) { REPORTER_ASSERT(reporter, char1 == char2); } else { REPORTER_ASSERT(reporter, char1 != char2); } } } { SurfaceParameters params(context); SkSurfaceCharacterization valid = params.createCharacterization(context); SkASSERT(valid.isValid()); SkSurfaceCharacterization inval1, inval2; SkASSERT(!inval1.isValid() && !inval2.isValid()); REPORTER_ASSERT(reporter, inval1 != inval2); REPORTER_ASSERT(reporter, valid != inval1); REPORTER_ASSERT(reporter, inval1 != valid); } } //////////////////////////////////////////////////////////////////////////////// // This tests SkSurfaceCharacterization/SkSurface compatibility void DDLSurfaceCharacterizationTestImpl(GrDirectContext* dContext, skiatest::Reporter* reporter) { // Create a bitmap that we can readback into SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.allocPixels(imageInfo); sk_sp ddl; // First, create a DDL using the stock SkSurface parameters { SurfaceParameters params(dContext); if (dContext->backend() == GrBackendApi::kVulkan) { params.setVkRTInputAttachmentSupport(true); } ddl = params.createDDL(dContext); SkAssertResult(ddl); // The DDL should draw into an SkSurface created with the same parameters sk_sp s = params.make(dContext); if (!s) { return; } REPORTER_ASSERT(reporter, s->draw(ddl)); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); dContext->flush(); } // Then, alter each parameter in turn and check that the DDL & surface are incompatible for (int i = 0; i < SurfaceParameters::kNumParams; ++i) { SurfaceParameters params(dContext); if (!params.modify(i)) { continue; } sk_sp s = params.make(dContext); if (!s) { continue; } REPORTER_ASSERT(reporter, !s->draw(ddl), "DDLSurfaceCharacterizationTest failed on parameter: %d\n", i); dContext->flush(); } // Next test the compatibility of resource cache parameters { const SurfaceParameters params(dContext); sk_sp s = params.make(dContext); size_t maxResourceBytes = dContext->getResourceCacheLimit(); dContext->setResourceCacheLimit(maxResourceBytes/2); REPORTER_ASSERT(reporter, !s->draw(ddl)); // DDL TODO: once proxies/ops can be de-instantiated we can re-enable these tests. // For now, DDLs are drawn once. #if 0 // resource limits >= those at characterization time are accepted context->setResourceCacheLimits(2*maxResourceCount, maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl)); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->setResourceCacheLimits(maxResourceCount, 2*maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl)); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->setResourceCacheLimits(maxResourceCount, maxResourceBytes); REPORTER_ASSERT(reporter, s->draw(ddl)); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); #endif dContext->flush(); } // Test that the textureability of the DDL characterization can block a DDL draw { SurfaceParameters params(dContext); params.disableTextureability(); sk_sp s = params.make(dContext); if (s) { REPORTER_ASSERT(reporter, !s->draw(ddl)); // bc the DDL was made w/ textureability dContext->flush(); } } // Make sure non-GPU-backed surfaces fail characterization { SkImageInfo ii = SkImageInfo::MakeN32(64, 64, kOpaque_SkAlphaType); sk_sp rasterSurface = SkSurface::MakeRaster(ii); SkSurfaceCharacterization c; REPORTER_ASSERT(reporter, !rasterSurface->characterize(&c)); } // Exercise the createResized method { SurfaceParameters params(dContext); sk_sp s = params.make(dContext); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // Too small SkSurfaceCharacterization char1 = char0.createResized(-1, -1); REPORTER_ASSERT(reporter, !char1.isValid()); // Too large SkSurfaceCharacterization char2 = char0.createResized(1000000, 32); REPORTER_ASSERT(reporter, !char2.isValid()); // Just right SkSurfaceCharacterization char3 = char0.createResized(32, 32); REPORTER_ASSERT(reporter, char3.isValid()); REPORTER_ASSERT(reporter, 32 == char3.width()); REPORTER_ASSERT(reporter, 32 == char3.height()); } // Exercise the createColorSpace method { SurfaceParameters params(dContext); sk_sp s = params.make(dContext); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // The default params create an sRGB color space REPORTER_ASSERT(reporter, char0.colorSpace()->isSRGB()); REPORTER_ASSERT(reporter, !char0.colorSpace()->gammaIsLinear()); { sk_sp newCS = SkColorSpace::MakeSRGBLinear(); SkSurfaceCharacterization char1 = char0.createColorSpace(std::move(newCS)); REPORTER_ASSERT(reporter, char1.isValid()); REPORTER_ASSERT(reporter, !char1.colorSpace()->isSRGB()); REPORTER_ASSERT(reporter, char1.colorSpace()->gammaIsLinear()); } { SkSurfaceCharacterization char2 = char0.createColorSpace(nullptr); REPORTER_ASSERT(reporter, char2.isValid()); REPORTER_ASSERT(reporter, !char2.colorSpace()); } { sk_sp newCS = SkColorSpace::MakeSRGBLinear(); SkSurfaceCharacterization invalid; REPORTER_ASSERT(reporter, !invalid.isValid()); SkSurfaceCharacterization stillInvalid = invalid.createColorSpace(std::move(newCS)); REPORTER_ASSERT(reporter, !stillInvalid.isValid()); } } // Exercise the createBackendFormat method { SurfaceParameters params(dContext); sk_sp s = params.make(dContext); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // The default params create a renderable RGBA8 surface auto originalBackendFormat = dContext->defaultBackendFormat(kRGBA_8888_SkColorType, GrRenderable::kYes); REPORTER_ASSERT(reporter, originalBackendFormat.isValid()); REPORTER_ASSERT(reporter, char0.backendFormat() == originalBackendFormat); auto newBackendFormat = dContext->defaultBackendFormat(kRGB_565_SkColorType, GrRenderable::kYes); if (newBackendFormat.isValid()) { SkSurfaceCharacterization char1 = char0.createBackendFormat(kRGB_565_SkColorType, newBackendFormat); REPORTER_ASSERT(reporter, char1.isValid()); REPORTER_ASSERT(reporter, char1.backendFormat() == newBackendFormat); SkSurfaceCharacterization invalid; REPORTER_ASSERT(reporter, !invalid.isValid()); auto stillInvalid = invalid.createBackendFormat(kRGB_565_SkColorType, newBackendFormat); REPORTER_ASSERT(reporter, !stillInvalid.isValid()); } } // Exercise the createFBO0 method if (dContext->backend() == GrBackendApi::kOpenGL) { SurfaceParameters params(dContext); // If the original characterization is textureable then we will fail trying to make an // FBO0 characterization params.disableTextureability(); sk_sp s = params.make(dContext); if (!s) { return; } SkSurfaceCharacterization char0; SkAssertResult(s->characterize(&char0)); // The default params create a non-FBO0 surface REPORTER_ASSERT(reporter, !char0.usesGLFBO0()); { SkSurfaceCharacterization char1 = char0.createFBO0(true); REPORTER_ASSERT(reporter, char1.isValid()); REPORTER_ASSERT(reporter, char1.usesGLFBO0()); } { SkSurfaceCharacterization invalid; REPORTER_ASSERT(reporter, !invalid.isValid()); SkSurfaceCharacterization stillInvalid = invalid.createFBO0(true); REPORTER_ASSERT(reporter, !stillInvalid.isValid()); } } } #ifdef SK_GL // Test out the surface compatibility checks regarding FBO0-ness. This test constructs // two parallel arrays of characterizations and surfaces in the order: // FBO0 w/ MSAA, FBO0 w/o MSAA, not-FBO0 w/ MSAA, not-FBO0 w/o MSAA // and then tries all sixteen combinations to check the expected compatibility. // Note: this is a GL-only test DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(CharacterizationFBO0nessTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); const GrCaps* caps = context->priv().caps(); sk_sp proxy = context->threadSafeProxy(); const size_t resourceCacheLimit = context->getResourceCacheLimit(); GrBackendFormat format = GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D); int availableSamples = caps->getRenderTargetSampleCount(4, format); if (availableSamples <= 1) { // This context doesn't support MSAA for RGBA8 return; } SkImageInfo ii = SkImageInfo::Make({ 128, 128 }, kRGBA_8888_SkColorType, kPremul_SkAlphaType); static constexpr int kStencilBits = 8; static constexpr bool kNotMipMapped = false; static constexpr bool kNotTextureable = false; const SkSurfaceProps surfaceProps(0x0, kRGB_H_SkPixelGeometry); // Rows are characterizations and columns are surfaces static const bool kExpectedCompatibility[4][4] = { // FBO0 & MSAA, FBO0 & not-MSAA, not-FBO0 & MSAA, not-FBO0 & not-MSAA /* FBO0 & MSAA */ { true, false, false, false }, /* FBO0 & not-MSAA */ { false, true, false, true }, /* not-FBO0 & MSAA */ { false, false, true, false }, /* not-FBO0 & not- */ { false, false, false, true } }; SkSurfaceCharacterization characterizations[4]; sk_sp surfaces[4]; int index = 0; for (bool isFBO0 : { true, false }) { for (int numSamples : { availableSamples, 1 }) { characterizations[index] = proxy->createCharacterization(resourceCacheLimit, ii, format, numSamples, kTopLeft_GrSurfaceOrigin, surfaceProps, kNotMipMapped, isFBO0, kNotTextureable); SkASSERT(characterizations[index].sampleCount() == numSamples); SkASSERT(characterizations[index].usesGLFBO0() == isFBO0); GrGLFramebufferInfo fboInfo{ isFBO0 ? 0 : (GrGLuint) 1, GR_GL_RGBA8 }; GrBackendRenderTarget backendRT(128, 128, numSamples, kStencilBits, fboInfo); SkAssertResult(backendRT.isValid()); surfaces[index] = SkSurface::MakeFromBackendRenderTarget(context, backendRT, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, nullptr, &surfaceProps); ++index; } } for (int c = 0; c < 4; ++c) { for (int s = 0; s < 4; ++s) { REPORTER_ASSERT(reporter, kExpectedCompatibility[c][s] == surfaces[s]->isCompatible(characterizations[c])); } } } #endif #ifdef SK_VULKAN DEF_GPUTEST_FOR_VULKAN_CONTEXT(CharacterizationVkSCBnessTest, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); SurfaceParameters params(dContext); params.modify(SurfaceParameters::kVkSCBCount); SkSurfaceCharacterization characterization = params.createCharacterization(dContext); REPORTER_ASSERT(reporter, characterization.isValid()); sk_sp ddl = params.createDDL(dContext); REPORTER_ASSERT(reporter, ddl.get()); sk_sp scbDrawContext = params.makeVkSCB(dContext); REPORTER_ASSERT(reporter, scbDrawContext->isCompatible(characterization)); scbDrawContext->releaseResources(); } #endif DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSurfaceCharacterizationTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); DDLSurfaceCharacterizationTestImpl(context, reporter); } // Test that a DDL created w/o textureability can be replayed into both a textureable and // non-textureable destination. Note that DDLSurfaceCharacterizationTest tests that a // textureable DDL cannot be played into a non-textureable destination but can be replayed // into a textureable destination. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLNonTextureabilityTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); // Create a bitmap that we can readback into SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.allocPixels(imageInfo); for (bool textureability : { true, false }) { sk_sp ddl; // First, create a DDL w/o textureability (and thus no mipmaps). TODO: once we have // reusable DDLs, move this outside of the loop. { SurfaceParameters params(context); params.disableTextureability(); if (context->backend() == GrBackendApi::kVulkan) { params.setVkRTInputAttachmentSupport(true); } ddl = params.createDDL(context); SkAssertResult(ddl); } // Then verify it can draw into either flavor of destination SurfaceParameters params(context); if (!textureability) { params.disableTextureability(); } if (context->backend() == GrBackendApi::kVulkan) { params.setVkRTInputAttachmentSupport(true); } sk_sp s = params.make(context); if (!s) { continue; } REPORTER_ASSERT(reporter, s->draw(ddl)); s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); context->flush(); } } static void test_make_render_target(skiatest::Reporter* reporter, GrDirectContext* dContext, const SurfaceParameters& params) { { const SkSurfaceCharacterization c = params.createCharacterization(dContext); if (!c.isValid()) { sk_sp tmp = params.make(dContext); // If we couldn't characterize the surface we shouldn't be able to create it either REPORTER_ASSERT(reporter, !tmp); return; } } const SkSurfaceCharacterization c = params.createCharacterization(dContext); { sk_sp s = params.make(dContext); REPORTER_ASSERT(reporter, s); if (!s) { REPORTER_ASSERT(reporter, !c.isValid()); return; } REPORTER_ASSERT(reporter, c.isValid()); GrBackendTexture backend = s->getBackendTexture(SkSurface::kFlushRead_BackendHandleAccess); if (backend.isValid()) { REPORTER_ASSERT(reporter, c.isCompatible(backend)); } REPORTER_ASSERT(reporter, s->isCompatible(c)); // Note that we're leaving 'backend' live here } // Make an SkSurface from scratch { sk_sp s = SkSurface::MakeRenderTarget(dContext, c, SkBudgeted::kYes); REPORTER_ASSERT(reporter, s); REPORTER_ASSERT(reporter, s->isCompatible(c)); } } //////////////////////////////////////////////////////////////////////////////// // This tests the SkSurface::MakeRenderTarget variants that take an SkSurfaceCharacterization. // In particular, the SkSurface, backendTexture and SkSurfaceCharacterization // should always be compatible. void DDLMakeRenderTargetTestImpl(GrDirectContext* dContext, skiatest::Reporter* reporter) { for (int i = -1; i < SurfaceParameters::kNumParams; ++i) { if (i == SurfaceParameters::kFBO0Count || i == SurfaceParameters::kVkSCBCount) { // MakeRenderTarget doesn't support FBO0 or vulkan secondary command buffers continue; } SurfaceParameters params(dContext); if (i >= 0 && !params.modify(i)) { continue; } test_make_render_target(reporter, dContext, params); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMakeRenderTargetTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); DDLMakeRenderTargetTestImpl(context, reporter); } //////////////////////////////////////////////////////////////////////////////// static constexpr int kSize = 8; struct TextureReleaseChecker { TextureReleaseChecker() : fReleaseCount(0) {} int fReleaseCount; static void Release(void* self) { static_cast(self)->fReleaseCount++; } }; enum class DDLStage { kMakeImage, kDrawImage, kDetach, kDrawDDL }; // This tests the ability to create and use wrapped textures in a DDL world DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLWrapBackendTest, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); auto mbet = sk_gpu_test::ManagedBackendTexture::MakeWithoutData(dContext, kSize, kSize, kRGBA_8888_SkColorType, GrMipmapped::kNo, GrRenderable::kNo, GrProtected::kNo); if (!mbet) { return; } SurfaceParameters params(dContext); sk_sp s = params.make(dContext); if (!s) { return; } SkSurfaceCharacterization c; SkAssertResult(s->characterize(&c)); SkDeferredDisplayListRecorder recorder(c); SkCanvas* canvas = recorder.getCanvas(); SkASSERT(canvas); auto rContext = canvas->recordingContext(); if (!rContext) { return; } // Wrapped Backend Textures are not supported in DDL TextureReleaseChecker releaseChecker; sk_sp image = SkImage::MakeFromTexture( rContext, mbet->texture(), kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, sk_gpu_test::ManagedBackendTexture::ReleaseProc, mbet->releaseContext(TextureReleaseChecker::Release, &releaseChecker)); REPORTER_ASSERT(reporter, !image); } //////////////////////////////////////////////////////////////////////////////// // Test out the behavior of an invalid DDLRecorder DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLInvalidRecorder, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); { SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(dContext, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); // never calling getCanvas means the backing surface is never allocated SkDeferredDisplayListRecorder recorder(characterization); } { SkSurfaceCharacterization invalid; SkDeferredDisplayListRecorder recorder(invalid); const SkSurfaceCharacterization c = recorder.characterization(); REPORTER_ASSERT(reporter, !c.isValid()); REPORTER_ASSERT(reporter, !recorder.getCanvas()); REPORTER_ASSERT(reporter, !recorder.detach()); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLCreateCharacterizationFailures, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); size_t maxResourceBytes = dContext->getResourceCacheLimit(); auto proxy = dContext->threadSafeProxy().get(); auto check_create_fails = [proxy, reporter, maxResourceBytes](const GrBackendFormat& backendFormat, int width, int height, SkColorType ct, bool willUseGLFBO0, bool isTextureable, GrProtected prot, bool vkRTSupportsInputAttachment, bool forVulkanSecondaryCommandBuffer) { const SkSurfaceProps surfaceProps(0x0, kRGB_H_SkPixelGeometry); SkImageInfo ii = SkImageInfo::Make(width, height, ct, kPremul_SkAlphaType, nullptr); SkSurfaceCharacterization c = proxy->createCharacterization( maxResourceBytes, ii, backendFormat, 1, kBottomLeft_GrSurfaceOrigin, surfaceProps, false, willUseGLFBO0, isTextureable, prot, vkRTSupportsInputAttachment, forVulkanSecondaryCommandBuffer); REPORTER_ASSERT(reporter, !c.isValid()); }; GrBackendFormat goodBackendFormat = dContext->defaultBackendFormat(kRGBA_8888_SkColorType, GrRenderable::kYes); SkASSERT(goodBackendFormat.isValid()); GrBackendFormat badBackendFormat; SkASSERT(!badBackendFormat.isValid()); SkColorType kGoodCT = kRGBA_8888_SkColorType; SkColorType kBadCT = kUnknown_SkColorType; static const bool kIsTextureable = true; static const bool kIsNotTextureable = false; static const bool kGoodUseFBO0 = false; static const bool kBadUseFBO0 = true; static const bool kGoodVkInputAttachment = false; static const bool kBadVkInputAttachment = true; static const bool kGoodForVkSCB = false; static const bool kBadForVkSCB = true; int goodWidth = 64; int goodHeight = 64; int badWidths[] = { 0, 1048576 }; int badHeights[] = { 0, 1048576 }; // In each of the check_create_fails calls there is one bad parameter that should cause the // creation of the characterization to fail. check_create_fails(goodBackendFormat, goodWidth, badHeights[0], kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); check_create_fails(goodBackendFormat, goodWidth, badHeights[1], kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); check_create_fails(goodBackendFormat, badWidths[0], goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); check_create_fails(goodBackendFormat, badWidths[1], goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); check_create_fails(badBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); check_create_fails(goodBackendFormat, goodWidth, goodHeight, kBadCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); // This fails because we always try to make a characterization that is textureable and we can't // have UseFBO0 be true and textureable. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kBadUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kGoodForVkSCB); if (dContext->backend() == GrBackendApi::kVulkan) { // The bad parameter in this case is the GrProtected::kYes since none of our test contexts // are made protected we can't have a protected surface. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kYes, kGoodVkInputAttachment, kGoodForVkSCB); // The following fails because forVulkanSecondaryCommandBuffer is true and // isTextureable is true. This is not a legal combination. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kGoodVkInputAttachment, kBadForVkSCB); // The following fails because forVulkanSecondaryCommandBuffer is true and // vkRTSupportsInputAttachment is true. This is not a legal combination. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsNotTextureable, GrProtected::kNo, kBadVkInputAttachment, kBadForVkSCB); // The following fails because forVulkanSecondaryCommandBuffer is true and // willUseGLFBO0 is true. This is not a legal combination. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kBadUseFBO0, kIsNotTextureable, GrProtected::kNo, kGoodVkInputAttachment, kBadForVkSCB); } else { // The following set vulkan only flags on non vulkan backends. check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsTextureable, GrProtected::kNo, kBadVkInputAttachment, kGoodForVkSCB); check_create_fails(goodBackendFormat, goodWidth, goodHeight, kGoodCT, kGoodUseFBO0, kIsNotTextureable, GrProtected::kNo, kGoodVkInputAttachment, kBadForVkSCB); } } //////////////////////////////////////////////////////////////////////////////// // Test that flushing a DDL via SkSurface::flush works struct FulfillInfo { sk_sp fTex; bool fFulfilled = false; bool fReleased = false; }; static sk_sp tracking_fulfill_proc(void* context) { FulfillInfo* info = (FulfillInfo*) context; info->fFulfilled = true; return info->fTex; } static void tracking_release_proc(void* context) { FulfillInfo* info = (FulfillInfo*) context; info->fReleased = true; } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSkSurfaceFlush, reporter, ctxInfo) { auto context = ctxInfo.directContext(); SkImageInfo ii = SkImageInfo::Make(32, 32, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); auto mbet = sk_gpu_test::ManagedBackendTexture::MakeFromInfo(context, ii); if (!mbet) { ERRORF(reporter, "Could not make texture."); return; } FulfillInfo fulfillInfo; fulfillInfo.fTex = SkPromiseImageTexture::Make(mbet->texture()); sk_sp ddl; { SkDeferredDisplayListRecorder recorder(characterization); GrBackendFormat format = context->defaultBackendFormat(kRGBA_8888_SkColorType, GrRenderable::kNo); SkASSERT(format.isValid()); SkCanvas* canvas = recorder.getCanvas(); sk_sp promiseImage = SkImage::MakePromiseTexture( canvas->recordingContext()->threadSafeProxy(), format, SkISize::Make(32, 32), GrMipmapped::kNo, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, tracking_fulfill_proc, tracking_release_proc, &fulfillInfo); canvas->clear(SK_ColorRED); canvas->drawImage(promiseImage, 0, 0); ddl = recorder.detach(); } context->flushAndSubmit(); s->draw(ddl); GrFlushInfo flushInfo; s->flush(SkSurface::BackendSurfaceAccess::kPresent, flushInfo); context->submit(); REPORTER_ASSERT(reporter, fulfillInfo.fFulfilled); // In order to receive the done callback with the low-level APIs we need to re-flush s->flush(); context->submit(true); REPORTER_ASSERT(reporter, fulfillInfo.fReleased); REPORTER_ASSERT(reporter, fulfillInfo.fTex->unique()); fulfillInfo.fTex.reset(); } //////////////////////////////////////////////////////////////////////////////// // Ensure that reusing a single DDLRecorder to create multiple DDLs works cleanly DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMultipleDDLs, reporter, ctxInfo) { auto context = ctxInfo.directContext(); SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkBitmap bitmap; bitmap.allocPixels(ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); SkDeferredDisplayListRecorder recorder(characterization); SkCanvas* canvas1 = recorder.getCanvas(); canvas1->clear(SK_ColorRED); canvas1->save(); canvas1->clipRect(SkRect::MakeXYWH(8, 8, 16, 16)); sk_sp ddl1 = recorder.detach(); SkCanvas* canvas2 = recorder.getCanvas(); SkPaint p; p.setColor(SK_ColorGREEN); canvas2->drawRect(SkRect::MakeWH(32, 32), p); sk_sp ddl2 = recorder.detach(); REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData()); REPORTER_ASSERT(reporter, ddl2->priv().lazyProxyData()); // The lazy proxy data being different ensures that the SkSurface, SkCanvas and backing- // lazy proxy are all different between the two DDLs REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData() != ddl2->priv().lazyProxyData()); s->draw(ddl1); s->draw(ddl2); // Make sure the clipRect from DDL1 didn't percolate into DDL2 s->readPixels(ii, bitmap.getPixels(), bitmap.rowBytes(), 0, 0); for (int y = 0; y < 32; ++y) { for (int x = 0; x < 32; ++x) { REPORTER_ASSERT(reporter, bitmap.getColor(x, y) == SK_ColorGREEN); if (bitmap.getColor(x, y) != SK_ColorGREEN) { return; // we only really need to report the error once } } } } #ifdef SK_GL static sk_sp noop_fulfill_proc(void*) { SkASSERT(0); return nullptr; } //////////////////////////////////////////////////////////////////////////////// // Check that the texture-specific flags (i.e., for external & rectangle textures) work // for promise images. As such, this is a GL-only test. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLTextureFlagsTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32); sk_sp s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii); SkSurfaceCharacterization characterization; SkAssertResult(s->characterize(&characterization)); SkDeferredDisplayListRecorder recorder(characterization); for (GrGLenum target : { GR_GL_TEXTURE_EXTERNAL, GR_GL_TEXTURE_RECTANGLE, GR_GL_TEXTURE_2D } ) { for (auto mipMapped : { GrMipmapped::kNo, GrMipmapped::kYes }) { GrBackendFormat format = GrBackendFormat::MakeGL(GR_GL_RGBA8, target); sk_sp image = SkImage::MakePromiseTexture( recorder.getCanvas()->recordingContext()->threadSafeProxy(), format, SkISize::Make(32, 32), mipMapped, kTopLeft_GrSurfaceOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, /*color space*/nullptr, noop_fulfill_proc, /*release proc*/ nullptr, /*context*/nullptr); if (GR_GL_TEXTURE_2D != target && mipMapped == GrMipmapped::kYes) { REPORTER_ASSERT(reporter, !image); continue; } REPORTER_ASSERT(reporter, image); GrTextureProxy* backingProxy = sk_gpu_test::GetTextureImageProxy(image.get(), context); REPORTER_ASSERT(reporter, backingProxy->mipmapped() == mipMapped); if (GR_GL_TEXTURE_2D == target) { REPORTER_ASSERT(reporter, !backingProxy->hasRestrictedSampling()); } else { REPORTER_ASSERT(reporter, backingProxy->hasRestrictedSampling()); } } } } #endif // SK_GL //////////////////////////////////////////////////////////////////////////////// // Test colorType and pixelConfig compatibility. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLCompatibilityTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); for (int ct = 0; ct <= kLastEnum_SkColorType; ++ct) { SkColorType colorType = static_cast(ct); SurfaceParameters params(context); params.setColorType(colorType); params.setColorSpace(nullptr); test_make_render_target(reporter, context, params); } }