/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkRandom.h" #include "src/core/SkTInternalLList.h" #include "src/core/SkTLList.h" #include "tests/Test.h" class ListElement { public: ListElement(int id) : fID(id) { } bool operator== (const ListElement& other) { return fID == other.fID; } int fID; private: SK_DECLARE_INTERNAL_LLIST_INTERFACE(ListElement); }; static void check_list(const SkTInternalLList<ListElement>& list, skiatest::Reporter* reporter, bool empty, int numElements, bool in0, bool in1, bool in2, bool in3, ListElement elements[4]) { REPORTER_ASSERT(reporter, empty == list.isEmpty()); #ifdef SK_DEBUG list.validate(); REPORTER_ASSERT(reporter, numElements == list.countEntries()); REPORTER_ASSERT(reporter, in0 == list.isInList(&elements[0])); REPORTER_ASSERT(reporter, in1 == list.isInList(&elements[1])); REPORTER_ASSERT(reporter, in2 == list.isInList(&elements[2])); REPORTER_ASSERT(reporter, in3 == list.isInList(&elements[3])); #endif } static void test_tinternallist(skiatest::Reporter* reporter) { SkTInternalLList<ListElement> list; ListElement elements[4] = { ListElement(0), ListElement(1), ListElement(2), ListElement(3), }; // list should be empty to start with check_list(list, reporter, true, 0, false, false, false, false, elements); list.addToHead(&elements[0]); check_list(list, reporter, false, 1, true, false, false, false, elements); list.addToHead(&elements[1]); list.addToHead(&elements[2]); list.addToHead(&elements[3]); check_list(list, reporter, false, 4, true, true, true, true, elements); // test out iterators typedef SkTInternalLList<ListElement>::Iter Iter; Iter iter; ListElement* cur = iter.init(list, Iter::kHead_IterStart); for (int i = 0; cur; ++i, cur = iter.next()) { REPORTER_ASSERT(reporter, cur->fID == 3-i); } cur = iter.init(list, Iter::kTail_IterStart); for (int i = 0; cur; ++i, cur = iter.prev()) { REPORTER_ASSERT(reporter, cur->fID == i); } // remove middle, frontmost then backmost list.remove(&elements[1]); list.remove(&elements[3]); list.remove(&elements[0]); check_list(list, reporter, false, 1, false, false, true, false, elements); // remove last element list.remove(&elements[2]); // list should be empty again check_list(list, reporter, true, 0, false, false, false, false, elements); // test out methods that add to the middle of the list. list.addAfter(&elements[1], nullptr); check_list(list, reporter, false, 1, false, true, false, false, elements); list.remove(&elements[1]); list.addBefore(&elements[1], nullptr); check_list(list, reporter, false, 1, false, true, false, false, elements); list.addBefore(&elements[0], &elements[1]); check_list(list, reporter, false, 2, true, true, false, false, elements); list.addAfter(&elements[3], &elements[1]); check_list(list, reporter, false, 3, true, true, false, true, elements); list.addBefore(&elements[2], &elements[3]); check_list(list, reporter, false, 4, true, true, true, true, elements); cur = iter.init(list, Iter::kHead_IterStart); for (int i = 0; cur; ++i, cur = iter.next()) { REPORTER_ASSERT(reporter, cur->fID == i); } while (!list.isEmpty()) { list.remove(list.tail()); } // test concat. SkTInternalLList<ListElement> listA, listB; listA.concat(std::move(listB)); check_list(listA, reporter, true, 0, false, false, false, false, elements); // NOLINTNEXTLINE(bugprone-use-after-move) check_list(listB, reporter, true, 0, false, false, false, false, elements); listB.addToTail(&elements[0]); listA.concat(std::move(listB)); check_list(listA, reporter, false, 1, true, false, false, false, elements); // NOLINTNEXTLINE(bugprone-use-after-move) check_list(listB, reporter, true, 0, false, false, false, false, elements); listB.addToTail(&elements[1]); listA.concat(std::move(listB)); check_list(listA, reporter, false, 2, true, true, false, false, elements); // NOLINTNEXTLINE(bugprone-use-after-move) check_list(listB, reporter, true, 0, false, false, false, false, elements); listA.concat(std::move(listB)); check_list(listA, reporter, false, 2, true, true, false, false, elements); // NOLINTNEXTLINE(bugprone-use-after-move) check_list(listB, reporter, true, 0, false, false, false, false, elements); listB.addToTail(&elements[2]); listB.addToTail(&elements[3]); listA.concat(std::move(listB)); check_list(listA, reporter, false, 4, true, true, true, true, elements); // NOLINTNEXTLINE(bugprone-use-after-move) check_list(listB, reporter, true, 0, false, false, false, false, elements); cur = iter.init(listA, Iter::kHead_IterStart); for (int i = 0; cur; ++i, cur = iter.next()) { REPORTER_ASSERT(reporter, cur->fID == i); } } template <unsigned int N> static void test_tllist(skiatest::Reporter* reporter) { typedef SkTLList<ListElement, N> ElList; typedef typename ElList::Iter Iter; SkRandom random; ElList list1; ElList list2; Iter iter1; Iter iter2; Iter iter3; Iter iter4; REPORTER_ASSERT(reporter, list1.isEmpty()); REPORTER_ASSERT(reporter, nullptr == iter1.init(list1, Iter::kHead_IterStart)); REPORTER_ASSERT(reporter, nullptr == iter1.init(list1, Iter::kTail_IterStart)); // Try popping an empty list list1.popHead(); list1.popTail(); REPORTER_ASSERT(reporter, list1.isEmpty()); REPORTER_ASSERT(reporter, list1 == list2); // Create two identical lists, one by appending to head and the other to the tail. list1.addToHead(ListElement(1)); list2.addToTail(ListElement(1)); iter1.init(list1, Iter::kHead_IterStart); iter2.init(list1, Iter::kTail_IterStart); REPORTER_ASSERT(reporter, iter1.get()->fID == iter2.get()->fID); iter3.init(list2, Iter::kHead_IterStart); iter4.init(list2, Iter::kTail_IterStart); REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, list1 == list2); list2.reset(); // use both before/after in-place construction on an empty list list2.addBefore(list2.headIter(), 1); REPORTER_ASSERT(reporter, list2 == list1); list2.reset(); list2.addAfter(list2.tailIter(), 1); REPORTER_ASSERT(reporter, list2 == list1); // add an element to the second list, check that iters are still valid iter3.init(list2, Iter::kHead_IterStart); iter4.init(list2, Iter::kTail_IterStart); list2.addToHead(ListElement(2)); REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, 1 == Iter(list2, Iter::kTail_IterStart).get()->fID); REPORTER_ASSERT(reporter, 2 == Iter(list2, Iter::kHead_IterStart).get()->fID); REPORTER_ASSERT(reporter, list1 != list2); list1.addToHead(ListElement(2)); REPORTER_ASSERT(reporter, list1 == list2); REPORTER_ASSERT(reporter, !list1.isEmpty()); list1.reset(); list2.reset(); REPORTER_ASSERT(reporter, list1.isEmpty() && list2.isEmpty()); // randomly perform insertions and deletions on a list and perform tests int count = 0; for (int j = 0; j < 100; ++j) { if (list1.isEmpty() || random.nextBiasedBool(3 * SK_Scalar1 / 4)) { int id = j; // Choose one of three ways to insert a new element: at the head, at the tail, // before a random element, after a random element int numValidMethods = 0 == count ? 2 : 4; int insertionMethod = random.nextULessThan(numValidMethods); switch (insertionMethod) { case 0: list1.addToHead(ListElement(id)); break; case 1: list1.addToTail(ListElement(id)); break; case 2: // fallthru to share code that picks random element. case 3: { int n = random.nextULessThan(list1.count()); Iter iter = list1.headIter(); // remember the elements before/after the insertion point. while (n--) { iter.next(); } Iter prev(iter); Iter next(iter); next.next(); prev.prev(); SkASSERT(iter.get()); // insert either before or after the iterator, then check that the // surrounding sequence is correct. if (2 == insertionMethod) { list1.addBefore(iter, id); Iter newItem(iter); newItem.prev(); REPORTER_ASSERT(reporter, newItem.get()->fID == id); if (next.get()) { REPORTER_ASSERT(reporter, next.prev()->fID == iter.get()->fID); } if (prev.get()) { REPORTER_ASSERT(reporter, prev.next()->fID == id); } } else { list1.addAfter(iter, id); Iter newItem(iter); newItem.next(); REPORTER_ASSERT(reporter, newItem.get()->fID == id); if (next.get()) { REPORTER_ASSERT(reporter, next.prev()->fID == id); } if (prev.get()) { REPORTER_ASSERT(reporter, prev.next()->fID == iter.get()->fID); } } } } ++count; } else { // walk to a random place either forward or backwards and remove. int n = random.nextULessThan(list1.count()); typename Iter::IterStart start; ListElement* (Iter::*incrFunc)(); if (random.nextBool()) { start = Iter::kHead_IterStart; incrFunc = &Iter::next; } else { start = Iter::kTail_IterStart; incrFunc = &Iter::prev; } // find the element Iter iter(list1, start); while (n--) { REPORTER_ASSERT(reporter, iter.get()); (iter.*incrFunc)(); } REPORTER_ASSERT(reporter, iter.get()); // remember the prev and next elements from the element to be removed Iter prev = iter; Iter next = iter; prev.prev(); next.next(); list1.remove(iter.get()); // make sure the remembered next/prev iters still work Iter pn = prev; pn.next(); Iter np = next; np.prev(); // pn should match next unless the target node was the head, in which case prev // walked off the list. REPORTER_ASSERT(reporter, pn.get() == next.get() || nullptr == prev.get()); // Similarly, np should match prev unless next originally walked off the tail. REPORTER_ASSERT(reporter, np.get() == prev.get() || nullptr == next.get()); --count; } REPORTER_ASSERT(reporter, count == list1.count()); } } DEF_TEST(LList, reporter) { test_tinternallist(reporter); test_tllist<1>(reporter); test_tllist<3>(reporter); test_tllist<8>(reporter); test_tllist<10>(reporter); test_tllist<16>(reporter); }