/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "bench/ResultsWriter.h" #include "bench/SkSLBench.h" #include "include/core/SkCanvas.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/mock/GrMockCaps.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLIRGenerator.h" #include "src/sksl/SkSLParser.h" class SkSLCompilerStartupBench : public Benchmark { protected: const char* onGetName() override { return "sksl_compiler_startup"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas*) override { GrShaderCaps caps(GrContextOptions{}); for (int i = 0; i < loops; i++) { SkSL::Compiler compiler(&caps); } } }; DEF_BENCH(return new SkSLCompilerStartupBench();) enum class Output { kNone, kGLSL, kMetal, kSPIRV }; class SkSLCompileBench : public Benchmark { public: static const char* output_string(Output output) { switch (output) { case Output::kNone: return ""; case Output::kGLSL: return "glsl_"; case Output::kMetal: return "metal_"; case Output::kSPIRV: return "spirv_"; } SkUNREACHABLE; } SkSLCompileBench(SkSL::String name, const char* src, bool optimize, Output output) : fName(SkSL::String("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + name) , fSrc(src) , fCaps(GrContextOptions(), GrMockOptions()) , fCompiler(fCaps.shaderCaps()) , fOutput(output) { fSettings.fOptimize = optimize; // The test programs we compile don't follow Vulkan rules and thus produce invalid // SPIR-V. This is harmless, so long as we don't try to validate them. fSettings.fValidateSPIRV = false; } protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas* canvas) override { for (int i = 0; i < loops; i++) { std::unique_ptr program = fCompiler.convertProgram( SkSL::ProgramKind::kFragment, fSrc, fSettings); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } SkSL::String result; switch (fOutput) { case Output::kNone: break; case Output::kGLSL: SkAssertResult(fCompiler.toGLSL(*program, &result)); break; case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break; case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break; } } } private: SkSL::String fName; SkSL::String fSrc; GrMockCaps fCaps; SkSL::Compiler fCompiler; SkSL::Program::Settings fSettings; Output fOutput; using INHERITED = Benchmark; }; class SkSLParseBench : public Benchmark { public: SkSLParseBench(SkSL::String name, const char* src) : fName("sksl_parse_" + name) , fSrc(src) , fCaps(GrContextOptions()) , fCompiler(&fCaps) {} protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDelayedSetup() override { SkSL::ParsedModule module = fCompiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); fCompiler.irGenerator().setSymbolTable(module.fSymbols); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; i++) { fCompiler.irGenerator().pushSymbolTable(); SkSL::Parser parser(fSrc.c_str(), fSrc.length(), *fCompiler.irGenerator().symbolTable(), fCompiler); parser.compilationUnit(); fCompiler.irGenerator().popSymbolTable(); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } } } private: SkSL::String fName; SkSL::String fSrc; GrShaderCaps fCaps; SkSL::Compiler fCompiler; SkSL::Program::Settings fSettings; using INHERITED = Benchmark; }; /////////////////////////////////////////////////////////////////////////////// #define COMPILER_BENCH(name, text) \ static constexpr char name ## _SRC[] = text; \ DEF_BENCH(return new SkSLParseBench(#name, name ## _SRC);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/false, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kGLSL);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kMetal);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSPIRV);) // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. COMPILER_BENCH(large, R"( layout(set=0, binding=0) uniform half urange_Stage1_c0; layout(set=0, binding=0) uniform half4 uleftBorderColor_Stage1_c0_c0_c0; layout(set=0, binding=0) uniform half4 urightBorderColor_Stage1_c0_c0_c0; layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0_c0_c0; layout(set=0, binding=0) uniform half2 ufocalParams_Stage1_c0_c0_c0_c0_c0; layout(set=0, binding=0) uniform float4 uscale0_1_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale2_3_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale4_5_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale6_7_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias0_1_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias2_3_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias4_5_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias6_7_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform half4 uthresholds1_7_Stage1_c0_c0_c0_c1; layout(set=0, binding=0) uniform half4 uthresholds9_13_Stage1_c0_c0_c0_c1; flat in half4 vcolor_Stage0; noperspective in float2 vTransformedCoords_0_Stage0; out half4 sk_FragColor; half4 TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0_c0(half4 _input) { float t = -1.0; half v = 1.0; @switch (2) { case 1: { half r0_2 = ufocalParams_Stage1_c0_c0_c0_c0_c0.y; t = float(r0_2) - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; if (t >= 0.0) { t = vTransformedCoords_0_Stage0.x + sqrt(t); } else { v = -1.0; } } break; case 0: { half r0 = ufocalParams_Stage1_c0_c0_c0_c0_c0.x; @if (true) { t = length(vTransformedCoords_0_Stage0) - float(r0); } else { t = -length(vTransformedCoords_0_Stage0) - float(r0); } } break; case 2: { half invR1 = ufocalParams_Stage1_c0_c0_c0_c0_c0.x; half fx = ufocalParams_Stage1_c0_c0_c0_c0_c0.y; float x_t = -1.0; @if (false) { x_t = dot(vTransformedCoords_0_Stage0, vTransformedCoords_0_Stage0) / vTransformedCoords_0_Stage0.x; } else if (false) { x_t = length(vTransformedCoords_0_Stage0) - vTransformedCoords_0_Stage0.x * float(invR1); } else { float temp = vTransformedCoords_0_Stage0.x * vTransformedCoords_0_Stage0.x - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; if (temp >= 0.0) { @if (false || !true) { x_t = -sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); } else { x_t = sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); } } } @if (!false) { if (x_t <= 0.0) { v = -1.0; } } @if (true) { @if (false) { t = x_t; } else { t = x_t + float(fx); } } else { @if (false) { t = -x_t; } else { t = -x_t + float(fx); } } @if (false) { t = 1.0 - t; } } break; } return half4(half(t), v, 0.0, 0.0); } half4 MatrixEffect_Stage1_c0_c0_c0_c0(half4 _input) { return TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0_c0(_input); } half4 UnrolledBinaryGradientColorizer_Stage1_c0_c0_c0_c1(half4 _input, float2 _coords) { half t = half(_coords.x); float4 scale; float4 bias; if (4 <= 4 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.w) { if (4 <= 2 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.y) { if (4 <= 1 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.x) { scale = uscale0_1_Stage1_c0_c0_c0_c1; bias = ubias0_1_Stage1_c0_c0_c0_c1; } else { scale = uscale2_3_Stage1_c0_c0_c0_c1; bias = ubias2_3_Stage1_c0_c0_c0_c1; } } else { if (4 <= 3 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.z) { scale = uscale4_5_Stage1_c0_c0_c0_c1; bias = ubias4_5_Stage1_c0_c0_c0_c1; } else { scale = uscale6_7_Stage1_c0_c0_c0_c1; bias = ubias6_7_Stage1_c0_c0_c0_c1; } } } else { if (4 <= 6 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.y) { if (4 <= 5 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.x) { scale = float4(0); bias = float4(0); } else { scale = float4(0); bias = float4(0); } } else { if (4 <= 7 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.z) { scale = float4(0); bias = float4(0); } else { scale = float4(0); bias = float4(0); } } } return half4(float(t) * scale + bias); } half4 ClampedGradientEffect_Stage1_c0_c0_c0(half4 _input) { half4 t = MatrixEffect_Stage1_c0_c0_c0_c0(_input); half4 outColor; if (!false && t.y < 0.0) { outColor = half4(0.0); } else if (t.x < 0.0) { outColor = uleftBorderColor_Stage1_c0_c0_c0; } else if (t.x > 1.0) { outColor = urightBorderColor_Stage1_c0_c0_c0; } else { outColor = UnrolledBinaryGradientColorizer_Stage1_c0_c0_c0_c1(_input, float2(half2(t.x, 0.0))); } @if (false) { outColor.xyz *= outColor.w; } return outColor; } half4 OverrideInputFragmentProcessor_Stage1_c0_c0(half4 _input) { return ClampedGradientEffect_Stage1_c0_c0_c0(false ? half4(0) : half4(1.000000, 1.000000, 1.000000, 1.000000)); } half4 DitherEffect_Stage1_c0(half4 _input) { half4 color = OverrideInputFragmentProcessor_Stage1_c0_c0(_input); half value; @if (sk_Caps.integerSupport) { uint x = uint(sk_FragCoord.x); uint y = uint(sk_FragCoord.y) ^ x; uint m = (((((y & 1) << 5 | (x & 1) << 4) | (y & 2) << 2) | (x & 2) << 1) | (y & 4) >> 1) | (x & 4) >> 2; value = half(m) / 64.0 - 0.4921875; } else { half4 bits = mod(half4(sk_FragCoord.yxyx), half4(2.0, 2.0, 4.0, 4.0)); bits.zw = step(2.0, bits.zw); bits.xz = abs(bits.xz - bits.yw); value = dot(bits, half4(0.5, 0.25, 0.125, 0.0625)) - 0.46875; } return half4(clamp(color.xyz + value * urange_Stage1_c0, 0.0, color.w), color.w); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_Stage0; outputColor_Stage0 = vcolor_Stage0; const half4 outputCoverage_Stage0 = half4(1); half4 output_Stage1; output_Stage1 = DitherEffect_Stage1_c0(outputColor_Stage0); { // Xfer Processor: Porter Duff sk_FragColor = output_Stage1 * outputCoverage_Stage0; } } )"); // This fragment shader is taken from GM_BlurDrawImage. COMPILER_BENCH(medium, R"( layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0_c0; layout(set=0, binding=0) uniform half4 urectH_Stage2_c1; layout(set=0, binding=0) uniform float3x3 umatrix_Stage2_c1_c0; layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage1; layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage2; flat in half4 vcolor_Stage0; noperspective in float2 vTransformedCoords_0_Stage0; out half4 sk_FragColor; half4 TextureEffect_Stage1_c0_c0_c0_c0(half4 _input) { return sample(uTextureSampler_0_Stage1, vTransformedCoords_0_Stage0); } half4 MatrixEffect_Stage1_c0_c0_c0(half4 _input) { return TextureEffect_Stage1_c0_c0_c0_c0(_input); } half4 Blend_Stage1_c0_c0(half4 _input) { // Blend mode: SrcIn (Compose-One behavior) return blend_src_in(MatrixEffect_Stage1_c0_c0_c0(half4(1)), _input); } half4 OverrideInputFragmentProcessor_Stage1_c0(half4 _input) { return Blend_Stage1_c0_c0(false ? half4(0) : half4(1.000000, 1.000000, 1.000000, 1.000000)); } half4 TextureEffect_Stage2_c1_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_Stage2, _coords).000r; } half4 MatrixEffect_Stage2_c1_c0(half4 _input, float2 _coords) { return TextureEffect_Stage2_c1_c0_c0(_input, ((umatrix_Stage2_c1_c0) * _coords.xy1).xy); } half4 RectBlurEffect_Stage2_c1(half4 _input) { /* key */ const bool highPrecision = false; half xCoverage; half yCoverage; float2 pos = sk_FragCoord.xy; @if (false) { pos = (float3x3(1) * float3(pos, 1.0)).xy; } @if (true) { half2 xy; @if (highPrecision) { xy = max(half2(float4(0).xy - pos), half2(pos - float4(0).zw)); } else { xy = max(half2(float2(urectH_Stage2_c1.xy) - pos), half2(pos - float2(urectH_Stage2_c1.zw))); } xCoverage = MatrixEffect_Stage2_c1_c0(_input, float2(half2(xy.x, 0.5))).w; yCoverage = MatrixEffect_Stage2_c1_c0(_input, float2(half2(xy.y, 0.5))).w; } else { half4 rect; @if (highPrecision) { rect.xy = half2(float4(0).xy - pos); rect.zw = half2(pos - float4(0).zw); } else { rect.xy = half2(float2(urectH_Stage2_c1.xy) - pos); rect.zw = half2(pos - float2(urectH_Stage2_c1.zw)); } xCoverage = (1.0 - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.x, 0.5))).w) - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.z, 0.5))).w; yCoverage = (1.0 - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.y, 0.5))).w) - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.w, 0.5))).w; } return (_input * xCoverage) * yCoverage; } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_Stage0; outputColor_Stage0 = vcolor_Stage0; const half4 outputCoverage_Stage0 = half4(1); half4 output_Stage1; output_Stage1 = OverrideInputFragmentProcessor_Stage1_c0(outputColor_Stage0); half4 output_Stage2; output_Stage2 = RectBlurEffect_Stage2_c1(outputCoverage_Stage0); { // Xfer Processor: Porter Duff sk_FragColor = output_Stage1 * output_Stage2; } } )"); // This is the fragment shader used to blit the Viewer window when running the software rasterizer. COMPILER_BENCH(small, R"( layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0; layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage1; noperspective in float2 vTransformedCoords_0_Stage0; out half4 sk_FragColor; half4 TextureEffect_Stage1_c0_c0_c0(half4 _input) { return sample(uTextureSampler_0_Stage1, vTransformedCoords_0_Stage0); } half4 MatrixEffect_Stage1_c0_c0(half4 _input) { return TextureEffect_Stage1_c0_c0_c0(_input); } half4 Blend_Stage1_c0(half4 _input) { // Blend mode: Modulate (Compose-One behavior) return blend_modulate(MatrixEffect_Stage1_c0_c0(half4(1)), _input); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_Stage0 = half4(1); const half4 outputCoverage_Stage0 = half4(1); half4 output_Stage1; output_Stage1 = Blend_Stage1_c0(outputColor_Stage0); { // Xfer Processor: Porter Duff sk_FragColor = output_Stage1 * outputCoverage_Stage0; } } )"); COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); #if defined(SK_BUILD_FOR_UNIX) #include // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and // directly add their results to the nanobench log. void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) { auto heap_bytes_used = []() { return mallinfo().uordblks; }; auto bench = [log](const char* name, int bytes) { log->beginObject(name); // test log->beginObject("meta"); // config log->appendS32("bytes", bytes); // sub_result log->endObject(); // config log->endObject(); // test }; // Heap used by a default compiler (with no modules loaded) { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); int after = heap_bytes_used(); bench("sksl_compiler_baseline", after - before); } // Heap used by a compiler with the two main GPU modules (fragment + vertex) loaded { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); int after = heap_bytes_used(); bench("sksl_compiler_gpu", after - before); } // Heap used by a compiler with the runtime shader & color filter modules loaded { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); int after = heap_bytes_used(); bench("sksl_compiler_runtimeeffect", after - before); } } #else void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {} #endif