/* http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi */ /* Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. Then for degree elevation, the equations are: Q0 = P0 Q1 = 1/3 P0 + 2/3 P1 Q2 = 2/3 P1 + 1/3 P2 Q3 = P2 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from the equations above: P1 = 3/2 Q1 - 1/2 Q0 P1 = 3/2 Q2 - 1/2 Q3 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since it's likely not, your best bet is to average them. So, P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 Cubic defined by: P1/2 - anchor points, C1/C2 control points |x| is the euclidean norm of x mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the control point at C = (3·C2 - P2 + 3·C1 - P1)/4 Algorithm pick an absolute precision (prec) Compute the Tdiv as the root of (cubic) equation sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a quadratic, with a defect less than prec, by the mid-point approximation. Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point approximation Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation confirmed by (maybe stolen from) http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html // maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf */ #include "CubicUtilities.h" #include "CurveIntersection.h" #include "LineIntersection.h" const bool AVERAGE_END_POINTS = true; // results in better fitting curves #define USE_CUBIC_END_POINTS 1 static double calcTDiv(const Cubic& cubic, double precision, double start) { const double adjust = sqrt(3) / 36; Cubic sub; const Cubic* cPtr; if (start == 0) { cPtr = &cubic; } else { // OPTIMIZE: special-case half-split ? sub_divide(cubic, start, 1, sub); cPtr = ⊂ } const Cubic& c = *cPtr; double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x; double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y; double dist = sqrt(dx * dx + dy * dy); double tDiv3 = precision / (adjust * dist); double t = cube_root(tDiv3); if (start > 0) { t = start + (1 - start) * t; } return t; } void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) { quad[0] = cubic[0]; if (AVERAGE_END_POINTS) { const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 }; const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 }; quad[1].x = (fromC1.x + fromC2.x) / 2; quad[1].y = (fromC1.y + fromC2.y) / 2; } else { lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]); } quad[2] = cubic[3]; } int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray& quadratics) { SkTDArray ts; cubic_to_quadratics(cubic, precision, ts); int tsCount = ts.count(); double t1Start = 0; int order = 0; for (int idx = 0; idx <= tsCount; ++idx) { double t1 = idx < tsCount ? ts[idx] : 1; Cubic part; sub_divide(cubic, t1Start, t1, part); Quadratic q1; demote_cubic_to_quad(part, q1); Quadratic s1; int o1 = reduceOrder(q1, s1); if (order < o1) { order = o1; } memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic)); t1Start = t1; } return order; } static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray& ts) { double tDiv = calcTDiv(cubic, precision, 0); if (tDiv >= 1) { return true; } if (tDiv >= 0.5) { *ts.append() = 0.5; return true; } return false; } static void addTs(const Cubic& cubic, double precision, double start, double end, SkTDArray& ts) { double tDiv = calcTDiv(cubic, precision, 0); double parts = ceil(1.0 / tDiv); for (double index = 0; index < parts; ++index) { double newT = start + (index / parts) * (end - start); if (newT > 0 && newT < 1) { *ts.append() = newT; } } } // flavor that returns T values only, deferring computing the quads until they are needed // FIXME: when called from recursive intersect 2, this could take the original cubic // and do a more precise job when calling chop at and sub divide by computing the fractional ts. // it would still take the prechopped cubic for reduce order and find cubic inflections void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray& ts) { Cubic reduced; int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed); if (order < 3) { return; } double inflectT[2]; int inflections = find_cubic_inflections(cubic, inflectT); SkASSERT(inflections <= 2); CubicPair pair; if (inflections == 1) { chop_at(cubic, pair, inflectT[0]); int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed); if (orderP1 < 2) { --inflections; } else { int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed); if (orderP2 < 2) { --inflections; } } } if (inflections == 0 && addSimpleTs(cubic, precision, ts)) { return; } if (inflections == 1) { chop_at(cubic, pair, inflectT[0]); addTs(pair.first(), precision, 0, inflectT[0], ts); addTs(pair.second(), precision, inflectT[0], 1, ts); return; } if (inflections == 2) { if (inflectT[0] > inflectT[1]) { SkTSwap(inflectT[0], inflectT[1]); } Cubic part; sub_divide(cubic, 0, inflectT[0], part); addTs(part, precision, 0, inflectT[0], ts); sub_divide(cubic, inflectT[0], inflectT[1], part); addTs(part, precision, inflectT[0], inflectT[1], ts); sub_divide(cubic, inflectT[1], 1, part); addTs(part, precision, inflectT[1], 1, ts); return; } addTs(cubic, precision, 0, 1, ts); }