/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkM44.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLExternalFunction.h" #include "src/sksl/SkSLVMGenerator.h" #include "src/utils/SkJSON.h" #include "tests/Test.h" struct ProgramBuilder { ProgramBuilder(skiatest::Reporter* r, const char* src) : fCaps(GrContextOptions{}), fCompiler(&fCaps) { SkSL::Program::Settings settings; // The SkSL inliner is well tested in other contexts. Here, we disable inlining entirely, // to stress-test the VM generator's handling of function calls with varying signatures. settings.fInlineThreshold = 0; // For convenience, so we can test functions other than (and not called by) main. settings.fRemoveDeadFunctions = false; fProgram = fCompiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); if (!fProgram) { ERRORF(r, "Program failed to compile:\n%s\n%s\n", src, fCompiler.errorText().c_str()); } } operator bool() const { return fProgram != nullptr; } SkSL::Program& operator*() { return *fProgram; } GrShaderCaps fCaps; SkSL::Compiler fCompiler; std::unique_ptr fProgram; }; static void verify_values(skiatest::Reporter* r, const char* src, const float* actual, const float* expected, int N, bool exactCompare) { auto exact_equiv = [](float x, float y) { return x == y || (isnan(x) && isnan(y)); }; bool valid = true; for (int i = 0; i < N; ++i) { if (exactCompare && !exact_equiv(actual[i], expected[i])) { valid = false; } if (!exactCompare && !SkScalarNearlyEqual(actual[i], expected[i])) { valid = false; } } if (!valid) { printf("for program: %s\n", src); printf(" expected ("); const char* separator = ""; for (int i = 0; i < N; ++i) { printf("%s%f", separator, expected[i]); separator = ", "; } printf("), but received ("); separator = ""; for (int i = 0; i < N; ++i) { printf("%s%f", separator, actual[i]); separator = ", "; } printf(")\n"); } REPORTER_ASSERT(r, valid); } void test(skiatest::Reporter* r, const char* src, float* in, const float* expected, bool exactCompare = true) { ProgramBuilder program(r, src); if (!program) { return; } const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); REPORTER_ASSERT(r, main); skvm::Builder b; SkSL::SkVMSignature sig; SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}, &sig); skvm::Program p = b.done(); REPORTER_ASSERT(r, p.nargs() == (int)(sig.fParameterSlots + sig.fReturnSlots)); auto out = std::make_unique(sig.fReturnSlots); auto args = std::make_unique(sig.fParameterSlots + sig.fReturnSlots); for (size_t i = 0; i < sig.fParameterSlots; ++i) { args[i] = in + i; } for (size_t i = 0; i < sig.fReturnSlots; ++i) { args[sig.fParameterSlots + i] = out.get() + i; } // TODO: Test with and without JIT? p.eval(1, args.get()); verify_values(r, src, out.get(), expected, sig.fReturnSlots, exactCompare); } void test(skiatest::Reporter* r, const char* src, float inR, float inG, float inB, float inA, float exR, float exG, float exB, float exA) { ProgramBuilder program(r, src); if (!program) { return; } const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); REPORTER_ASSERT(r, main); skvm::Builder b; SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}); skvm::Program p = b.done(); // TODO: Test with and without JIT? p.eval(1, &inR, &inG, &inB, &inA); float actual[4] = { inR, inG, inB, inA }; float expected[4] = { exR, exG, exB, exA }; verify_values(r, src, actual, expected, 4, /*exactCompare=*/true); // TODO: vec_test with skvm } DEF_TEST(SkSLInterpreterAdd, r) { test(r, "void main(inout half4 color) { color.r = color.r + color.g; }", 0.25, 0.75, 0, 0, 1, 0.75, 0, 0); test(r, "void main(inout half4 color) { color += half4(1, 2, 3, 4); }", 4, 3, 2, 1, 5, 5, 5, 5); test(r, "void main(inout half4 color) { half4 c = color; color += c; }", 0.25, 0.5, 0.75, 1, 0.5, 1, 1.5, 2); test(r, "void main(inout half4 color) { color.r = half(int(color.r) + int(color.g)); }", 1, 3, 0, 0, 4, 3, 0, 0); } DEF_TEST(SkSLInterpreterSubtract, r) { test(r, "void main(inout half4 color) { color.r = color.r - color.g; }", 1, 0.75, 0, 0, 0.25, 0.75, 0, 0); test(r, "void main(inout half4 color) { color -= half4(1, 2, 3, 4); }", 5, 5, 5, 5, 4, 3, 2, 1); test(r, "void main(inout half4 color) { half4 c = color; color -= c; }", 4, 3, 2, 1, 0, 0, 0, 0); test(r, "void main(inout half4 color) { color.x = -color.x; }", 4, 3, 2, 1, -4, 3, 2, 1); test(r, "void main(inout half4 color) { color = -color; }", 4, 3, 2, 1, -4, -3, -2, -1); test(r, "void main(inout half4 color) { color.r = half(int(color.r) - int(color.g)); }", 3, 1, 0, 0, 2, 1, 0, 0); } DEF_TEST(SkSLInterpreterMultiply, r) { test(r, "void main(inout half4 color) { color.r = color.r * color.g; }", 2, 3, 0, 0, 6, 3, 0, 0); test(r, "void main(inout half4 color) { color *= half4(1, 2, 3, 4); }", 2, 3, 4, 5, 2, 6, 12, 20); test(r, "void main(inout half4 color) { half4 c = color; color *= c; }", 4, 3, 2, 1, 16, 9, 4, 1); test(r, "void main(inout half4 color) { color.r = half(int(color.r) * int(color.g)); }", 3, -2, 0, 0, -6, -2, 0, 0); } DEF_TEST(SkSLInterpreterDivide, r) { test(r, "void main(inout half4 color) { color.r = color.r / color.g; }", 1, 2, 0, 0, 0.5, 2, 0, 0); test(r, "void main(inout half4 color) { color /= half4(1, 2, 3, 4); }", 12, 12, 12, 12, 12, 6, 4, 3); test(r, "void main(inout half4 color) { half4 c = color; color /= c; }", 4, 3, 2, 1, 1, 1, 1, 1); test(r, "void main(inout half4 color) { color.r = half(int(color.r) / int(color.g)); }", 8, -2, 0, 0, -4, -2, 0, 0); } DEF_TEST(SkSLInterpreterAnd, r) { test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) " "color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3); test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) " "color = half4(color.a); }", 1, 1, 0, 3, 1, 1, 0, 3); test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) " "color = half4(color.a); }", 2, 1, 1, 3, 2, 1, 1, 3); test(r, "half global; bool update() { global = 123; return true; }" "void main(inout half4 color) { global = 0; if (color.r > color.g && update()) " "color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 123); test(r, "half global; bool update() { global = 123; return true; }" "void main(inout half4 color) { global = 0; if (color.r > color.g && update()) " "color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 1, 1, 1, 0); } DEF_TEST(SkSLInterpreterOr, r) { test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) " "color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3); test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) " "color = half4(color.a); }", 1, 1, 0, 3, 3, 3, 3, 3); test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) " "color = half4(color.a); }", 1, 1, 1, 3, 1, 1, 1, 3); test(r, "half global; bool update() { global = 123; return true; }" "void main(inout half4 color) { global = 0; if (color.r > color.g || update()) " "color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 3, 3, 3, 123); test(r, "half global; bool update() { global = 123; return true; }" "void main(inout half4 color) { global = 0; if (color.r > color.g || update()) " "color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 0); } DEF_TEST(SkSLInterpreterMatrix, r) { float in[16]; float expected[16]; // Constructing matrix from scalar produces a diagonal matrix in[0] = 2.0f; expected[0] = 4.0f; test(r, "float main(float x) { float4x4 m = float4x4(x); return m[1][1] + m[1][2] + m[2][2]; }", in, expected); // Constructing from a different-sized matrix fills the remaining space with the identity matrix expected[0] = 3.0f; test(r, "float main(float x) {" "float2x2 m = float2x2(x);" "float4x4 m2 = float4x4(m);" "return m2[0][0] + m2[3][3]; }", in, expected); // Constructing a matrix from vectors or scalars fills in values in column-major order in[0] = 1.0f; in[1] = 2.0f; in[2] = 4.0f; in[3] = 8.0f; expected[0] = 6.0f; test(r, "float main(float4 v) { float2x2 m = float2x2(v); return m[0][1] + m[1][0]; }", in, expected); expected[0] = 10.0f; test(r, "float main(float4 v) {" "float2x2 m = float2x2(v.x, v.y, v.w, v.z);" "return m[0][1] + m[1][0]; }", in, expected); // Initialize 16 values to be used as inputs to matrix tests for (int i = 0; i < 16; ++i) { in[i] = (float)i; } // M+M, M-S, S-M for (int i = 0; i < 16; ++i) { expected[i] = (float)(2 * i); } test(r, "float4x4 main(float4x4 m) { return m + m; }", in, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i + 3); } test(r, "float4x4 main(float4x4 m) { return m + 3.0; }", in, expected); test(r, "float4x4 main(float4x4 m) { return 3.0 + m; }", in, expected); // M-M, M-S, S-M for (int i = 0; i < 4; ++i) { expected[i] = 4.0f; } test(r, "float2x2 main(float2x2 m1, float2x2 m2) { return m2 - m1; }", in, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i - 3); } test(r, "float4x4 main(float4x4 m) { return m - 3.0; }", in, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(3 - i); } test(r, "float4x4 main(float4x4 m) { return 3.0 - m; }", in, expected); // M*S, S*M, M/S, S/M for (int i = 0; i < 16; ++i) { expected[i] = (float)(i * 3); } test(r, "float4x4 main(float4x4 m) { return m * 3.0; }", in, expected); test(r, "float4x4 main(float4x4 m) { return 3.0 * m; }", in, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i) / 2.0f; } test(r, "float4x4 main(float4x4 m) { return m / 2.0; }", in, expected); for (int i = 0; i < 16; ++i) { expected[i] = 1.0f / (float)(i + 1); } test(r, "float4x4 main(float4x4 m) { return 1.0 / (m + 1); }", in, expected); // Matrix negation for (int i = 0; i < 16; ++i) { expected[i] = (float)(-i); } test(r, "float4x4 main(float4x4 m) { return -m; }", in, expected); // M*V, V*M for (int i = 0; i < 3; ++i) { expected[i] = 9.0f*i + 10.0f*(i+3) + 11.0f*(i+6); } test(r, "float3 main(float3x3 m, float3 v) { return m * v; }", in, expected); for (int i = 0; i < 3; ++i) { expected[i] = 9.0f*(3*i) + 10.0f*(3*i+1) + 11.0f*(3*i+2); } test(r, "float3 main(float3x3 m, float3 v) { return v * m; }", in, expected); // M*M { SkM44 m = SkM44::ColMajor(in); SkM44 m2; float in2[16]; for (int i = 0; i < 16; ++i) { in2[i] = (i + 4) % 16; } m2 = SkM44::ColMajor(in2); m.setConcat(m, m2); // Rearrange the columns on the RHS so we detect left-hand/right-hand errors test(r, "float4x4 main(float4x4 m) { return m * float4x4(m[1], m[2], m[3], m[0]); }", in, (float*)&m); } } DEF_TEST(SkSLInterpreterTernary, r) { test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }", 0, 1, 2, 0, 2, 1, 2, 0); test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }", 0, 3, 2, 0, 3, 3, 2, 0); } DEF_TEST(SkSLInterpreterCast, r) { union Val { float f; int32_t s; }; Val input[2]; Val expected[2]; input[0].s = 3; input[1].s = -5; expected[0].f = 3.0f; expected[1].f = -5.0f; test(r, "float main(int x) { return float (x); }", (float*)input, (float*)expected); test(r, "float2 main(int2 x) { return float2(x); }", (float*)input, (float*)expected); input[0].f = 3.0f; input[1].f = -5.0f; expected[0].s = 3; expected[1].s = -5; test(r, "int main(float x) { return int (x); }", (float*)input, (float*)expected); test(r, "int2 main(float2 x) { return int2(x); }", (float*)input, (float*)expected); input[0].s = 3; expected[0].f = 3.0f; expected[1].f = 3.0f; test(r, "float2 main(int x) { return float2(x); }", (float*)input, (float*)expected); } DEF_TEST(SkSLInterpreterIf, r) { test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 3, 0, 0, 5, 3, 0, 1); test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 6, 0, 0, 5, 6, 0, 0); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 3, 5, 0, 0, 3, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 6, 5, 0, 0, 6, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 3, 0, 0, 5, 3, 0, 1); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 6, 0, 0, 5, 6, 0, 0); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 3, 5, 0, 0, 3, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 6, 5, 0, 0, 6, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, 2, 0, 0, 2, 2, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, -2, 0, 0, 2, -2, 0, 0); test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, 2, 0, 0, 2, 2, 0, 0); test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, -2, 0, 0, 2, -2, 0, 1); test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, 2, 0, 0, 2, 2, 0, 0); test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, -2, 0, 0, 2, -2, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else " "color.a = 2; }", 1, 1, 0, 0, 1, 1, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else " "color.a = 2; }", 2, -2, 0, 0, 2, -2, 0, 2); } DEF_TEST(SkSLInterpreterIfVector, r) { test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }", 1, 2, 1, 2, 1, 2, 1, 1); test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }", 1, 2, 3, 2, 1, 2, 3, 2); test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }", 1, 2, 1, 2, 1, 2, 1, 2); test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }", 1, 2, 3, 2, 1, 2, 3, 1); } DEF_TEST(SkSLInterpreterFor, r) { test(r, "void main(inout half4 color) { for (int i = 1; i <= 10; ++i) color.r += half(i); }", 0, 0, 0, 0, 55, 0, 0, 0); test(r, "void main(inout half4 color) {" " for (int i = 1; i <= 10; ++i)" " for (int j = 1; j <= 10; ++j)" " if (j >= i) { color.r += half(j); }" "}", 0, 0, 0, 0, 385, 0, 0, 0); test(r, "void main(inout half4 color) {" " for (int i = 1; i <= 10; ++i)" " for (int j = 1; j < 20 ; ++j) {" " if (i == j) continue;" " if (j > 10) break;" " color.r += half(j);" " }" "}", 0, 0, 0, 0, 495, 0, 0, 0); } DEF_TEST(SkSLInterpreterPrefixPostfix, r) { test(r, "void main(inout half4 color) { color.r = ++color.g; }", 1, 2, 3, 4, 3, 3, 3, 4); test(r, "void main(inout half4 color) { color.r = color.g++; }", 1, 2, 3, 4, 2, 3, 3, 4); } DEF_TEST(SkSLInterpreterSwizzle, r) { test(r, "void main(inout half4 color) { color = color.abgr; }", 1, 2, 3, 4, 4, 3, 2, 1); test(r, "void main(inout half4 color) { color.rgb = half4(5, 6, 7, 8).bbg; }", 1, 2, 3, 4, 7, 7, 6, 4); test(r, "void main(inout half4 color) { color.bgr = half3(5, 6, 7); }", 1, 2, 3, 4, 7, 6, 5, 4); } DEF_TEST(SkSLInterpreterGlobal, r) { test(r, "int x; void main(inout half4 color) { x = 10; color.b = half(x); }", 1, 2, 3, 4, 1, 2, 10, 4); test(r, "float4 x; void main(inout float4 color) { x = color * 2; color = x; }", 1, 2, 3, 4, 2, 4, 6, 8); test(r, "float4 x; void main(inout float4 color) { x = float4(5, 6, 7, 8); color = x.wzyx; }", 1, 2, 3, 4, 8, 7, 6, 5); test(r, "float4 x; void main(inout float4 color) { x.wzyx = float4(5, 6, 7, 8); color = x; }", 1, 2, 3, 4, 8, 7, 6, 5); } DEF_TEST(SkSLInterpreterGeneric, r) { float value1 = 5; float expected1 = 25; test(r, "float main(float x) { return x * x; }", &value1, &expected1); float value2[2] = { 5, 25 }; float expected2[2] = { 25, 625 }; test(r, "float2 main(float x, float y) { return float2(x * x, y * y); }", value2, expected2); } DEF_TEST(SkSLInterpreterFieldAccessComplex, r) { const char* src = R"( struct P { float x; float y; }; P make_point() { P p; p.x = 7; p.y = 3; return p; } float main() { return make_point().y; } )"; float expected = 3.0f; test(r, src, /*in=*/nullptr, &expected); } DEF_TEST(SkSLInterpreterIndexComplex, r) { const char* src = R"( float2x2 make_mtx() { return float2x2(1, 2, 3, 4); } float main() { return make_mtx()[1][0]; } )"; float expected = 3.0f; test(r, src, /*in=*/nullptr, &expected); } DEF_TEST(SkSLInterpreterCompound, r) { struct RectAndColor { SkIRect fRect; SkColor4f fColor; }; struct ManyRects { int fNumRects; RectAndColor fRects[4]; }; const char* src = // Some struct definitions "struct Point { int x; int y; };\n" "struct Rect { Point p0; Point p1; };\n" "struct RectAndColor { Rect r; float4 color; };\n" // Structs as globals, parameters, return values "RectAndColor temp;\n" "int rect_height(Rect r) { return r.p1.y - r.p0.y; }\n" "RectAndColor make_blue_rect(int w, int h) {\n" " temp.r.p0.x = temp.r.p0.y = 0;\n" " temp.r.p1.x = w; temp.r.p1.y = h;\n" " temp.color = float4(0, 1, 0, 1);\n" " return temp;\n" "}\n" // Initialization and assignment of types larger than 4 slots "RectAndColor init_big(RectAndColor r) { RectAndColor s = r; return s; }\n" "RectAndColor copy_big(RectAndColor r) { RectAndColor s; s = r; return s; }\n" // Same for arrays, including some non-constant indexing "int median(int a[15]) { return a[7]; }\n" "float tempFloats[8];\n" "float sums(float a[8]) {\n" " tempFloats[0] = a[0];\n" " for (int i = 1; i < 8; ++i) { tempFloats[i] = tempFloats[i - 1] + a[i]; }\n" " return tempFloats[7];\n" "}\n" // Uniforms, array-of-structs "uniform Rect gRects[4];\n" "Rect get_rect_2() { return gRects[2]; }\n" // Kitchen sink (swizzles, inout, SoAoS) "struct ManyRects { int numRects; RectAndColor rects[4]; };\n" "void fill_rects(inout ManyRects mr) {\n" " for (int i = 0; i < 4; ++i) {\n" " if (i >= mr.numRects) { break; }\n" " mr.rects[i].r = gRects[i];\n" " float b = float(mr.rects[i].r.p1.y);\n" " mr.rects[i].color = float4(b, b, b, b);\n" " }\n" "}\n"; ProgramBuilder program(r, src); auto rect_height = SkSL::Program_GetFunction(*program, "rect_height"), make_blue_rect = SkSL::Program_GetFunction(*program, "make_blue_rect"), median = SkSL::Program_GetFunction(*program, "median"), sums = SkSL::Program_GetFunction(*program, "sums"), get_rect_2 = SkSL::Program_GetFunction(*program, "get_rect_2"), fill_rects = SkSL::Program_GetFunction(*program, "fill_rects"); SkIRect gRects[4] = { { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 }, { 13,14,15,16 } }; auto build = [&](const SkSL::FunctionDefinition* fn) { skvm::Builder b; skvm::Ptr uniformPtr = b.uniform(); skvm::Val uniforms[16]; for (int i = 0; i < 16; ++i) { uniforms[i] = b.uniform32(uniformPtr, i * sizeof(int)).id; } SkSL::ProgramToSkVM(*program, *fn, &b, uniforms); return b.done(); }; struct Args { Args(void* uniformData) { fArgs.push_back(uniformData); } void add(void* base, int n) { for (int i = 0; i < n; ++i) { fArgs.push_back(SkTAddOffset(base, i * sizeof(float))); } } std::vector fArgs; }; { SkIRect in = SkIRect::MakeXYWH(10, 10, 20, 30); int out = 0; skvm::Program p = build(rect_height); Args args(gRects); args.add(&in, 4); args.add(&out, 1); p.eval(1, args.fArgs.data()); REPORTER_ASSERT(r, out == 30); } { int in[2] = { 15, 25 }; RectAndColor out; skvm::Program p = build(make_blue_rect); Args args(gRects); args.add(&in, 2); args.add(&out, 8); p.eval(1, args.fArgs.data()); REPORTER_ASSERT(r, out.fRect.width() == 15); REPORTER_ASSERT(r, out.fRect.height() == 25); SkColor4f blue = { 0.0f, 1.0f, 0.0f, 1.0f }; REPORTER_ASSERT(r, out.fColor == blue); } { int in[15] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; int out = 0; skvm::Program p = build(median); Args args(gRects); args.add(&in, 15); args.add(&out, 1); p.eval(1, args.fArgs.data()); REPORTER_ASSERT(r, out == 8); } { float in[8] = { 1, 2, 3, 4, 5, 6, 7, 8 }; float out = 0; skvm::Program p = build(sums); Args args(gRects); args.add(&in, 8); args.add(&out, 1); p.eval(1, args.fArgs.data()); REPORTER_ASSERT(r, out == static_cast((7 + 1) * (7 + 2) / 2)); } { SkIRect out = SkIRect::MakeEmpty(); skvm::Program p = build(get_rect_2); Args args(gRects); args.add(&out, 4); p.eval(1, args.fArgs.data()); REPORTER_ASSERT(r, out == gRects[2]); } { ManyRects in; memset(&in, 0, sizeof(in)); in.fNumRects = 2; skvm::Program p = build(fill_rects); Args args(gRects); args.add(&in, 33); p.eval(1, args.fArgs.data()); ManyRects expected; memset(&expected, 0, sizeof(expected)); expected.fNumRects = 2; for (int i = 0; i < 2; ++i) { expected.fRects[i].fRect = gRects[i]; float c = gRects[i].fBottom; expected.fRects[i].fColor = { c, c, c, c }; } REPORTER_ASSERT(r, memcmp(&in, &expected, sizeof(in)) == 0); } } static void expect_failure(skiatest::Reporter* r, const char* src) { GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); SkSL::Program::Settings settings; auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, !program); } DEF_TEST(SkSLInterpreterRestrictLoops, r) { // while and do-while loops are not allowed expect_failure(r, "void main(inout float x) { while (x < 1) { x++; } }"); expect_failure(r, "void main(inout float x) { do { x++; } while (x < 1); }"); } DEF_TEST(SkSLInterpreterRestrictFunctionCalls, r) { // Ensure that simple recursion is not allowed expect_failure(r, "float main() { return main() + 1; }"); // Ensure that calls to undefined functions are not allowed (to prevent mutual recursion) expect_failure(r, "float foo(); float bar() { return foo(); } float foo() { return bar(); }"); } DEF_TEST(SkSLInterpreterReturnThenCall, r) { // Test that early returns disable execution in subsequently called functions const char* src = R"( float y; void inc () { ++y; } void maybe_inc() { if (y < 0) return; inc(); } void main(inout float x) { y = x; maybe_inc(); x = y; } )"; ProgramBuilder program(r, src); const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); REPORTER_ASSERT(r, main); skvm::Builder b; SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}); skvm::Program p = b.done(); float xs[] = { -2.0f, 0.0f, 3.0f, -1.0f }; p.eval(4, xs); REPORTER_ASSERT(r, xs[0] == -2.0f); REPORTER_ASSERT(r, xs[1] == 1.0f); REPORTER_ASSERT(r, xs[2] == 4.0f); REPORTER_ASSERT(r, xs[3] == -1.0f); } DEF_TEST(SkSLInterpreterEarlyReturn, r) { // Test early returns with divergent control flow const char* src = "float main(float x, float y) { if (x < y) { return x; } return y; }"; ProgramBuilder program(r, src); const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); REPORTER_ASSERT(r, main); skvm::Builder b; SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}); skvm::Program p = b.done(); float xs[] = { 1.0f, 3.0f }, ys[] = { 2.0f, 2.0f }; float rets[2]; p.eval(2, xs, ys, rets); REPORTER_ASSERT(r, rets[0] == 1.0f); REPORTER_ASSERT(r, rets[1] == 2.0f); } DEF_TEST(SkSLInterpreterFunctions, r) { const char* src = "float sqr(float x) { return x * x; }\n" "float sub(float x, float y) { return x - y; }\n" "float main(float x) { return sub(sqr(x), x); }\n" // Different signatures "float dot(float2 a, float2 b) { return a.x*b.x + a.y*b.y; }\n" "float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n" "float dot3_test(float x) { return dot(float3(x, x + 1, x + 2), float3(1, -1, 2)); }\n" "float dot2_test(float x) { return dot(float2(x, x + 1), float2(1, -1)); }\n"; ProgramBuilder program(r, src); auto sub = SkSL::Program_GetFunction(*program, "sub"); auto sqr = SkSL::Program_GetFunction(*program, "sqr"); auto main = SkSL::Program_GetFunction(*program, "main"); auto tan = SkSL::Program_GetFunction(*program, "tan"); auto dot3 = SkSL::Program_GetFunction(*program, "dot3_test"); auto dot2 = SkSL::Program_GetFunction(*program, "dot2_test"); REPORTER_ASSERT(r, sub); REPORTER_ASSERT(r, sqr); REPORTER_ASSERT(r, main); REPORTER_ASSERT(r, !tan); // Getting a non-existent function should return nullptr REPORTER_ASSERT(r, dot3); REPORTER_ASSERT(r, dot2); auto test_fn = [&](const SkSL::FunctionDefinition* fn, float in, float expected) { skvm::Builder b; SkSL::ProgramToSkVM(*program, *fn, &b, /*uniforms=*/{}); skvm::Program p = b.done(); float out = 0.0f; p.eval(1, &in, &out); REPORTER_ASSERT(r, out == expected); }; test_fn(main, 3.0f, 6.0f); test_fn(dot3, 3.0f, 9.0f); test_fn(dot2, 3.0f, -1.0f); } DEF_TEST(SkSLInterpreterOutParams, r) { test(r, "void oneAlpha(inout half4 color) { color.a = 1; }" "void main(inout half4 color) { oneAlpha(color); }", 0, 0, 0, 0, 0, 0, 0, 1); test(r, "half2 tricky(half x, half y, inout half2 color, half z) {" " color.xy = color.yx;" " return half2(x + y, z);" "}" "void main(inout half4 color) {" " half2 t = tricky(1, 2, color.rb, 5);" " color.ga = t;" "}", 1, 2, 3, 4, 3, 3, 1, 5); } DEF_TEST(SkSLInterpreterSwizzleSingleLvalue, r) { test(r, "void main(inout half4 color) { color.xywz = half4(1,2,3,4); }", 0, 0, 0, 0, 1, 2, 4, 3); } DEF_TEST(SkSLInterpreterSwizzleDoubleLvalue, r) { test(r, "void main(inout half4 color) { color.xywz.yxzw = half4(1,2,3,4); }", 0, 0, 0, 0, 2, 1, 4, 3); } DEF_TEST(SkSLInterpreterSwizzleIndexLvalue, r) { const char* src = R"( void main(inout half4 color) { for (int i = 0; i < 4; i++) { color.wzyx[i] += half(i); } } )"; test(r, src, 0, 0, 0, 0, 3, 2, 1, 0); } DEF_TEST(SkSLInterpreterMathFunctions, r) { float value[4], expected[4]; value[0] = 0.0f; expected[0] = 0.0f; test(r, "float main(float x) { return sin(x); }", value, expected); test(r, "float main(float x) { return tan(x); }", value, expected); value[0] = 0.0f; expected[0] = 1.0f; test(r, "float main(float x) { return cos(x); }", value, expected); value[0] = 25.0f; expected[0] = 5.0f; test(r, "float main(float x) { return sqrt(x); }", value, expected); value[0] = 90.0f; expected[0] = sk_float_degrees_to_radians(value[0]); test(r, "float main(float x) { return radians(x); }", value, expected); value[0] = 1.0f; value[1] = -1.0f; expected[0] = 1.0f / SK_FloatSqrt2; expected[1] = -1.0f / SK_FloatSqrt2; test(r, "float2 main(float2 x) { return normalize(x); }", value, expected); } DEF_TEST(SkSLInterpreterVoidFunction, r) { test(r, "half x; void foo() { x = 1.0; }" "void main(inout half4 color) { foo(); color.r = x; }", 0, 0, 0, 0, 1, 0, 0, 0); } DEF_TEST(SkSLInterpreterMix, r) { float value, expected; value = 0.5f; expected = 0.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected); value = 0.75f; expected = 5.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected); value = 2.0f; expected = 30.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected); float valueVectors[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f }, expectedVector[] = { 3.0f, 4.0f, 5.0f, 6.0f }; test(r, "float4 main(float4 x, float4 y) { return mix(x, y, 0.5); }", valueVectors, expectedVector); } DEF_TEST(SkSLInterpreterCross, r) { float args[] = { 1.0f, 4.0f, -6.0f, -2.0f, 7.0f, -3.0f }; SkV3 cross = SkV3::Cross({args[0], args[1], args[2]}, {args[3], args[4], args[5]}); float expected[] = { cross.x, cross.y, cross.z }; test(r, "float3 main(float3 x, float3 y) { return cross(x, y); }", args, expected); } DEF_TEST(SkSLInterpreterInverse, r) { { SkMatrix m; m.setRotate(30).postScale(1, 2); float args[4] = { m[0], m[3], m[1], m[4] }; SkAssertResult(m.invert(&m)); float expt[4] = { m[0], m[3], m[1], m[4] }; test(r, "float2x2 main(float2x2 m) { return inverse(m); }", args, expt, false); } { SkMatrix m; m.setRotate(30).postScale(1, 2).postTranslate(1, 2); float args[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; SkAssertResult(m.invert(&m)); float expt[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; test(r, "float3x3 main(float3x3 m) { return inverse(m); }", args, expt, false); } { float args[16], expt[16]; // just some crazy thing that is invertible SkM44 m = {1, 2, 3, 4, 1, 2, 0, 3, 1, 0, 1, 4, 1, 3, 2, 0}; m.getColMajor(args); SkAssertResult(m.invert(&m)); m.getColMajor(expt); test(r, "float4x4 main(float4x4 m) { return inverse(m); }", args, expt, false); } } DEF_TEST(SkSLInterpreterDot, r) { float args[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f }; float expected = args[0] * args[2] + args[1] * args[3]; test(r, "float main(float2 x, float2 y) { return dot(x, y); }", args, &expected); expected = args[0] * args[3] + args[1] * args[4] + args[2] * args[5]; test(r, "float main(float3 x, float3 y) { return dot(x, y); }", args, &expected); expected = args[0] * args[4] + args[1] * args[5] + args[2] * args[6] + args[3] * args[7]; test(r, "float main(float4 x, float4 y) { return dot(x, y); }", args, &expected); } class ExternalSqrt : public SkSL::ExternalFunction { public: ExternalSqrt(const char* name, SkSL::Compiler& compiler) : INHERITED(name, *compiler.context().fTypes.fFloat) , fCompiler(compiler) {} int callParameterCount() const override { return 1; } void getCallParameterTypes(const SkSL::Type** outTypes) const override { outTypes[0] = fCompiler.context().fTypes.fFloat.get(); } void call(skvm::Builder* b, skvm::F32* arguments, skvm::F32* outResult, skvm::I32 mask) const override { outResult[0] = sqrt(arguments[0]); } private: SkSL::Compiler& fCompiler; using INHERITED = SkSL::ExternalFunction; }; DEF_TEST(SkSLInterpreterExternalFunction, r) { GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); SkSL::Program::Settings settings; const char* src = "float main() { return external(25); }"; std::vector> externalFunctions; externalFunctions.push_back(std::make_unique("external", compiler)); std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings, &externalFunctions); REPORTER_ASSERT(r, program); const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); skvm::Builder b; SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}); skvm::Program p = b.done(); float out; p.eval(1, &out); REPORTER_ASSERT(r, out == 5.0); } class ExternalTable : public SkSL::ExternalFunction { public: ExternalTable(const char* name, SkSL::Compiler& compiler, skvm::Uniforms* uniforms) : INHERITED(name, *compiler.context().fTypes.fFloat) , fCompiler(compiler) , fTable{1, 2, 4, 8} { fAddr = uniforms->pushPtr(fTable); } int callParameterCount() const override { return 1; } void getCallParameterTypes(const SkSL::Type** outTypes) const override { outTypes[0] = fCompiler.context().fTypes.fFloat.get(); } void call(skvm::Builder* b, skvm::F32* arguments, skvm::F32* outResult, skvm::I32 mask) const override { skvm::I32 index = skvm::trunc(arguments[0] * 4); index = max(0, min(index, 3)); outResult[0] = b->gatherF(fAddr, index); } private: SkSL::Compiler& fCompiler; skvm::Uniform fAddr; float fTable[4]; using INHERITED = SkSL::ExternalFunction; }; DEF_TEST(SkSLInterpreterExternalTable, r) { GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); SkSL::Program::Settings settings; const char* src = "float4 main() { return float4(table(2), table(-1), table(0.4), table(0.6)); }"; std::vector> externalFunctions; skvm::Builder b; skvm::Uniforms u(b.uniform(), 0); externalFunctions.push_back(std::make_unique("table", compiler, &u)); std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings, &externalFunctions); REPORTER_ASSERT(r, program); const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main"); SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}); skvm::Program p = b.done(); float out[4]; p.eval(1, u.buf.data(), &out[0], &out[1], &out[2], &out[3]); REPORTER_ASSERT(r, out[0] == 8.0); REPORTER_ASSERT(r, out[1] == 1.0); REPORTER_ASSERT(r, out[2] == 2.0); REPORTER_ASSERT(r, out[3] == 4.0); }