/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DMSrcSink.h" #include "SamplePipeControllers.h" #include "SkAndroidCodec.h" #include "SkCodec.h" #include "SkCodecTools.h" #include "SkCommonFlags.h" #include "SkData.h" #include "SkDocument.h" #include "SkError.h" #include "SkFunction.h" #include "SkImageGenerator.h" #include "SkMultiPictureDraw.h" #include "SkNullCanvas.h" #include "SkOSFile.h" #include "SkPictureData.h" #include "SkPictureRecorder.h" #include "SkRandom.h" #include "SkRecordDraw.h" #include "SkRecorder.h" #include "SkRemote.h" #include "SkSVGCanvas.h" #include "SkStream.h" #include "SkTLogic.h" #include "SkXMLWriter.h" #include "SkSwizzler.h" DEFINE_bool(multiPage, false, "For document-type backends, render the source" " into multiple pages"); static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) { SkAutoTUnref encoded(SkData::NewWithCopy(src, size)); return encoded && SkDEPRECATED_InstallDiscardablePixelRef(encoded, dst); } namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { SkAutoTDelete gm(fFactory(nullptr)); canvas->concat(gm->getInitialTransform()); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { SkAutoTDelete gm(fFactory(nullptr)); return gm->getISize(); } Name GMSrc::name() const { SkAutoTDelete gm(fFactory(nullptr)); return gm->getName(); } void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { SkAutoTDelete gm(fFactory(nullptr)); gm->modifyGrContextOptions(options); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ BRDSrc::BRDSrc(Path path, SkBitmapRegionDecoderInterface::Strategy strategy, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) : fPath(path) , fStrategy(strategy) , fMode(mode) , fDstColorType(dstColorType) , fSampleSize(sampleSize) {} bool BRDSrc::veto(SinkFlags flags) const { // No need to test to non-raster or indirect backends. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } static SkBitmapRegionDecoderInterface* create_brd(Path path, SkBitmapRegionDecoderInterface::Strategy strategy) { SkAutoTUnref encoded(SkData::NewFromFileName(path.c_str())); if (!encoded) { return NULL; } return SkBitmapRegionDecoderInterface::CreateBitmapRegionDecoder(encoded, strategy); } Error BRDSrc::draw(SkCanvas* canvas) const { SkColorType colorType = canvas->imageInfo().colorType(); if (kRGB_565_SkColorType == colorType && CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } switch (fDstColorType) { case CodecSrc::kGetFromCanvas_DstColorType: break; case CodecSrc::kIndex8_Always_DstColorType: colorType = kIndex_8_SkColorType; break; case CodecSrc::kGrayscale_Always_DstColorType: colorType = kGray_8_SkColorType; break; } SkAutoTDelete brd(create_brd(fPath, fStrategy)); if (nullptr == brd.get()) { return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str())); } if (!brd->conversionSupported(colorType)) { return Error::Nonfatal("Cannot convert to color type.\n"); } const uint32_t width = brd->width(); const uint32_t height = brd->height(); // Visually inspecting very small output images is not necessary. if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } switch (fMode) { case kFullImage_Mode: { SkAutoTDelete bitmap(brd->decodeRegion(0, 0, width, height, fSampleSize, colorType)); if (nullptr == bitmap.get() || colorType != bitmap->colorType()) { return Error::Nonfatal("Cannot convert to color type.\n"); } canvas->drawBitmap(*bitmap, 0, 0); return ""; } case kDivisor_Mode: { const uint32_t divisor = 2; if (width < divisor || height < divisor) { return Error::Nonfatal("Divisor is larger than image dimension.\n"); } // Use a border to test subsets that extend outside the image. // We will not allow the border to be larger than the image dimensions. Allowing // these large borders causes off by one errors that indicate a problem with the // test suite, not a problem with the implementation. const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor); const uint32_t scaledBorder = SkTMin(5u, maxBorder); const uint32_t unscaledBorder = scaledBorder * fSampleSize; // We may need to clear the canvas to avoid uninitialized memory. // Assume we are scaling a 780x780 image with sampleSize = 8. // The output image should be 97x97. // Each subset will be 390x390. // Each scaled subset be 48x48. // Four scaled subsets will only fill a 96x96 image. // The bottom row and last column will not be touched. // This is an unfortunate result of our rounding rules when scaling. // Maybe we need to consider testing scaled subsets without trying to // combine them to match the full scaled image? Or maybe this is the // best we can do? canvas->clear(0); for (uint32_t x = 0; x < divisor; x++) { for (uint32_t y = 0; y < divisor; y++) { // Calculate the subset dimensions uint32_t subsetWidth = width / divisor; uint32_t subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; // Increase the size of the subset in order to have a border on each side const int decodeLeft = left - unscaledBorder; const int decodeTop = top - unscaledBorder; const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; SkAutoTDelete bitmap(brd->decodeRegion(decodeLeft, decodeTop, decodeWidth, decodeHeight, fSampleSize, colorType)); if (nullptr == bitmap.get() || colorType != bitmap->colorType()) { return Error::Nonfatal("Cannot convert to color type.\n"); } canvas->drawBitmapRect(*bitmap, SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), SkRect::MakeXYWH((SkScalar) (left / fSampleSize), (SkScalar) (top / fSampleSize), (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), nullptr); } } return ""; } default: SkASSERT(false); return "Error: Should not be reached.\n"; } } SkISize BRDSrc::size() const { SkAutoTDelete brd(create_brd(fPath, fStrategy)); if (brd) { return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize), SkTMax(1, brd->height() / (int) fSampleSize)); } return SkISize::Make(0, 0); } static SkString get_scaled_name(const Path& path, float scale) { return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); } Name BRDSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, get_scale_from_sample_size(fSampleSize)); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fScale(scale) {} bool CodecSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to // let the GPU handle it. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } bool get_decode_info(SkImageInfo* decodeInfo, const SkImageInfo& defaultInfo, SkColorType canvasColorType, CodecSrc::DstColorType dstColorType) { switch (dstColorType) { case CodecSrc::kIndex8_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType) { return false; } *decodeInfo = defaultInfo.makeColorType(kIndex_8_SkColorType); break; case CodecSrc::kGrayscale_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType) { return false; } *decodeInfo = defaultInfo.makeColorType(kGray_8_SkColorType); break; default: *decodeInfo = defaultInfo.makeColorType(canvasColorType); break; } // FIXME: Currently we cannot draw unpremultiplied sources. if (decodeInfo->alphaType() == kUnpremul_SkAlphaType) { decodeInfo->makeAlphaType(kPremul_SkAlphaType); } return true; } Error CodecSrc::draw(SkCanvas* canvas) const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (nullptr == codec.get()) { return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo; if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(), fDstColorType)) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } // Try to scale the image if it is desired SkISize size = codec->getScaledDimensions(fScale); if (size == decodeInfo.dimensions() && 1.0f != fScale) { return Error::Nonfatal("Test without scaling is uninteresting."); } // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); // Construct a color table for the decode if necessary SkAutoTUnref colorTable(nullptr); SkPMColor* colorPtr = nullptr; int* colorCountPtr = nullptr; int maxColors = 256; if (kIndex_8_SkColorType == decodeInfo.colorType()) { SkPMColor colors[256]; colorTable.reset(new SkColorTable(colors, maxColors)); colorPtr = const_cast(colorTable->readColors()); colorCountPtr = &maxColors; } SkBitmap bitmap; if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), decodeInfo.width(), decodeInfo.height()); } switch (fMode) { case kCodec_Mode: { switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), nullptr, colorPtr, colorCountPtr)) { case SkCodec::kSuccess: // We consider incomplete to be valid, since we should still decode what is // available. case SkCodec::kIncompleteInput: break; case SkCodec::kInvalidConversion: return Error::Nonfatal("Incompatible colortype conversion"); default: // Everything else is considered a failure. return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } canvas->drawBitmap(bitmap, 0, 0); break; } case kScanline_Mode: { if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, colorCountPtr)) { return Error::Nonfatal("Could not start scanline decoder"); } void* dst = bitmap.getAddr(0, 0); size_t rowBytes = bitmap.rowBytes(); uint32_t height = decodeInfo.height(); switch (codec->getScanlineOrder()) { case SkCodec::kTopDown_SkScanlineOrder: case SkCodec::kBottomUp_SkScanlineOrder: case SkCodec::kNone_SkScanlineOrder: // We do not need to check the return value. On an incomplete // image, memory will be filled with a default value. codec->getScanlines(dst, height, rowBytes); break; case SkCodec::kOutOfOrder_SkScanlineOrder: { for (int y = 0; y < decodeInfo.height(); y++) { int dstY = codec->outputScanline(y); void* dstPtr = bitmap.getAddr(0, dstY); // We complete the loop, even if this call begins to fail // due to an incomplete image. This ensures any uninitialized // memory will be filled with the proper value. codec->getScanlines(dstPtr, 1, bitmap.rowBytes()); } break; } } canvas->drawBitmap(bitmap, 0, 0); break; } case kScanline_Subset_Mode: { //this mode decodes the image in divisor*divisor subsets, using a scanline decoder const int divisor = 2; const int w = decodeInfo.width(); const int h = decodeInfo.height(); if (divisor > w || divisor > h) { return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), w, h)); } const int subsetWidth = w/divisor; const int subsetHeight = h/divisor; // One of our subsets will be larger to contain any pixels that do not divide evenly. const int extraX = w % divisor; const int extraY = h % divisor; /* * if w or h are not evenly divided by divisor need to adjust width and height of end * subsets to cover entire image. * Add extraX and extraY to largestSubsetBm's width and height to adjust width * and height of end subsets. * subsetBm is extracted from largestSubsetBm. * subsetBm's size is determined based on the current subset and may be larger for end * subsets. */ SkImageInfo largestSubsetDecodeInfo = decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY); SkBitmap largestSubsetBm; if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, nullptr, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height()); } for (int col = 0; col < divisor; col++) { //currentSubsetWidth may be larger than subsetWidth for rightmost subsets const int currentSubsetWidth = (col + 1 == divisor) ? subsetWidth + extraX : subsetWidth; const int x = col * subsetWidth; for (int row = 0; row < divisor; row++) { //currentSubsetHeight may be larger than subsetHeight for bottom subsets const int currentSubsetHeight = (row + 1 == divisor) ? subsetHeight + extraY : subsetHeight; const int y = row * subsetHeight; //create scanline decoder for each subset SkCodec::Options options; SkIRect subset = SkIRect::MakeXYWH(x, 0, currentSubsetWidth, h); options.fSubset = ⊂ // TODO (msarett): Support this mode for all scanline orderings. if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options, colorPtr, colorCountPtr) || SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { if (x == 0 && y == 0) { //first try, image may not be compatible return Error::Nonfatal("Could not start top-down scanline decoder"); } else { return "Error scanline decoder is nullptr"; } } // Skip to the first line of subset. We ignore the result value here. // If the skip value fails, this will indicate an incomplete image. // This means that the call to getScanlines() will also fail, but it // will fill the buffer with a default value, so we can still draw the // image. codec->skipScanlines(y); //create and set size of subsetBm SkBitmap subsetBm; SkIRect bounds = SkIRect::MakeWH(currentSubsetWidth, currentSubsetHeight); SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds)); SkAutoLockPixels autolock(subsetBm, true); codec->getScanlines(subsetBm.getAddr(0, 0), currentSubsetHeight, subsetBm.rowBytes()); subsetBm.notifyPixelsChanged(); canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y)); } } break; } case kStripe_Mode: { const int height = decodeInfo.height(); // This value is chosen arbitrarily. We exercise more cases by choosing a value that // does not align with image blocks. const int stripeHeight = 37; const int numStripes = (height + stripeHeight - 1) / stripeHeight; // Decode odd stripes if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, colorCountPtr) || SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { // This mode was designed to test the new skip scanlines API in libjpeg-turbo. // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting // to run this test for image types that do not have this scanline ordering. return Error::Nonfatal("Could not start top-down scanline decoder"); } for (int i = 0; i < numStripes; i += 2) { // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); codec->skipScanlines(linesToSkip); // Read a stripe const int startY = (i + 1) * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); if (linesToRead > 0) { codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); } } // Decode even stripes const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr, colorPtr, colorCountPtr); if (SkCodec::kSuccess != startResult) { return "Failed to restart scanline decoder with same parameters."; } for (int i = 0; i < numStripes; i += 2) { // Read a stripe const int startY = i * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); if (linesToSkip > 0) { codec->skipScanlines(linesToSkip); } } canvas->drawBitmap(bitmap, 0, 0); break; } case kSubset_Mode: { // Arbitrarily choose a divisor. int divisor = 2; // Total width/height of the image. const int W = codec->getInfo().width(); const int H = codec->getInfo().height(); if (divisor > W || divisor > H) { return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big " "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), W, H)); } // subset dimensions // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. const int w = SkAlign2(W / divisor); const int h = SkAlign2(H / divisor); SkIRect subset; SkCodec::Options opts; opts.fSubset = ⊂ SkBitmap subsetBm; // We will reuse pixel memory from bitmap. void* pixels = bitmap.getPixels(); // Keep track of left and top (for drawing subsetBm into canvas). We could use // fScale * x and fScale * y, but we want integers such that the next subset will start // where the last one ended. So we'll add decodeInfo.width() and height(). int left = 0; for (int x = 0; x < W; x += w) { int top = 0; for (int y = 0; y < H; y+= h) { // Do not make the subset go off the edge of the image. const int preScaleW = SkTMin(w, W - x); const int preScaleH = SkTMin(h, H - y); subset.setXYWH(x, y, preScaleW, preScaleH); // And scale // FIXME: Should we have a version of getScaledDimensions that takes a subset // into account? decodeInfo = decodeInfo.makeWH( SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)), SkTMax(1, SkScalarRoundToInt(preScaleH * fScale))); size_t rowBytes = decodeInfo.minRowBytes(); if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(), nullptr, nullptr)) { return SkStringPrintf("could not install pixels for %s.", fPath.c_str()); } const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes, &opts, colorPtr, colorCountPtr); switch (result) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; case SkCodec::kInvalidConversion: if (0 == (x|y)) { // First subset is okay to return unimplemented. return Error::Nonfatal("Incompatible colortype conversion"); } // If the first subset succeeded, a later one should not fail. // fall through to failure case SkCodec::kUnimplemented: if (0 == (x|y)) { // First subset is okay to return unimplemented. return Error::Nonfatal("subset codec not supported"); } // If the first subset succeeded, why would a later one fail? // fall through to failure default: return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) " "from %s with dimensions (%d x %d)\t error %d", x, y, decodeInfo.width(), decodeInfo.height(), fPath.c_str(), W, H, result); } canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top)); // translate by the scaled height. top += decodeInfo.height(); } // translate by the scaled width. left += decodeInfo.width(); } return ""; } } return ""; } SkISize CodecSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (nullptr == codec) { return SkISize::Make(0, 0); } return codec->getScaledDimensions(fScale); } Name CodecSrc::name() const { if (1.0f == fScale) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, fScale); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ AndroidCodecSrc::AndroidCodecSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, int sampleSize) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fSampleSize(sampleSize) {} bool AndroidCodecSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to // let the GPU handle it. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Error AndroidCodecSrc::draw(SkCanvas* canvas) const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTDelete codec(SkAndroidCodec::NewFromData(encoded)); if (nullptr == codec.get()) { return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo; if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(), fDstColorType)) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } // Scale the image if it is desired. SkISize size = codec->getSampledDimensions(fSampleSize); // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); // Construct a color table for the decode if necessary SkAutoTUnref colorTable(nullptr); SkPMColor* colorPtr = nullptr; int* colorCountPtr = nullptr; int maxColors = 256; if (kIndex_8_SkColorType == decodeInfo.colorType()) { SkPMColor colors[256]; colorTable.reset(new SkColorTable(colors, maxColors)); colorPtr = const_cast(colorTable->readColors()); colorCountPtr = &maxColors; } SkBitmap bitmap; if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), decodeInfo.width(), decodeInfo.height()); } // Create options for the codec. SkAndroidCodec::AndroidOptions options; options.fColorPtr = colorPtr; options.fColorCount = colorCountPtr; options.fSampleSize = fSampleSize; switch (fMode) { case kFullImage_Mode: { switch (codec->getAndroidPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options)) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; case SkCodec::kInvalidConversion: return Error::Nonfatal("Cannot convert to requested color type.\n"); default: return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } canvas->drawBitmap(bitmap, 0, 0); return ""; } case kDivisor_Mode: { const int width = codec->getInfo().width(); const int height = codec->getInfo().height(); const int divisor = 2; if (width < divisor || height < divisor) { return Error::Nonfatal("Divisor is larger than image dimension.\n"); } // Keep track of the final decoded dimensions. int finalScaledWidth = 0; int finalScaledHeight = 0; for (int x = 0; x < divisor; x++) { for (int y = 0; y < divisor; y++) { // Calculate the subset dimensions int subsetWidth = width / divisor; int subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; SkIRect subset = SkIRect::MakeXYWH(left, top, subsetWidth, subsetHeight); if (!codec->getSupportedSubset(&subset)) { return "Could not get supported subset to decode.\n"; } options.fSubset = ⊂ const int scaledWidthOffset = subset.left() / fSampleSize; const int scaledHeightOffset = subset.top() / fSampleSize; void* pixels = bitmap.getAddr(scaledWidthOffset, scaledHeightOffset); SkISize scaledSubsetSize = codec->getSampledSubsetDimensions(fSampleSize, subset); SkImageInfo subsetDecodeInfo = decodeInfo.makeWH(scaledSubsetSize.width(), scaledSubsetSize.height()); if (x + 1 == divisor && y + 1 == divisor) { finalScaledWidth = scaledWidthOffset + scaledSubsetSize.width(); finalScaledHeight = scaledHeightOffset + scaledSubsetSize.height(); } switch (codec->getAndroidPixels(subsetDecodeInfo, pixels, bitmap.rowBytes(), &options)) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; case SkCodec::kInvalidConversion: return Error::Nonfatal("Cannot convert to requested color type.\n"); default: return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } } } SkRect rect = SkRect::MakeXYWH(0, 0, (SkScalar) finalScaledWidth, (SkScalar) finalScaledHeight); canvas->drawBitmapRect(bitmap, rect, rect, nullptr); return ""; } default: SkASSERT(false); return "Error: Should not be reached.\n"; } } SkISize AndroidCodecSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTDelete codec(SkAndroidCodec::NewFromData(encoded)); if (nullptr == codec) { return SkISize::Make(0, 0); } return codec->getSampledDimensions(fSampleSize); } Name AndroidCodecSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, get_scale_from_sample_size(fSampleSize)); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {} bool ImageSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. // TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Error ImageSrc::draw(SkCanvas* canvas) const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } const SkColorType dstColorType = canvas->imageInfo().colorType(); if (fDivisor == 0) { // Decode the full image. SkBitmap bitmap; if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, dstColorType, SkImageDecoder::kDecodePixels_Mode)) { return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); } if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) { // Do not draw a bitmap with alpha to a destination without alpha. return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); } encoded.reset((SkData*)nullptr); // Might as well drop this when we're done with it. canvas->drawBitmap(bitmap, 0,0); return ""; } // Decode subsets. This is a little involved. SkAutoTDelete stream(new SkMemoryStream(encoded)); SkAutoTDelete decoder(SkImageDecoder::Factory(stream.get())); if (!decoder) { return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str()); } stream->rewind(); int w,h; if (!decoder->buildTileIndex(stream.detach(), &w, &h)) { return Error::Nonfatal("Subset decoding not supported."); } // Divide the image into subsets that cover the entire image. if (fDivisor > w || fDivisor > h) { return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" "for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h)); } const int subsetWidth = w / fDivisor, subsetHeight = h / fDivisor; for (int y = 0; y < h; y += subsetHeight) { for (int x = 0; x < w; x += subsetWidth) { SkBitmap subset; SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight); if (!decoder->decodeSubset(&subset, rect, dstColorType)) { return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).", x, y, x+subsetWidth, y+subsetHeight); } if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) { // Do not draw a bitmap with alpha to a destination without alpha. // This is not an error, but there is nothing interesting to show. // This should only happen on the first iteration through the loop. SkASSERT(0 == x && 0 == y); return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); } canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y)); } } return ""; } SkISize ImageSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkBitmap bitmap; if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, kUnknown_SkColorType, SkImageDecoder::kDecodeBounds_Mode)) { return SkISize::Make(0,0); } return bitmap.dimensions(); } Name ImageSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const SkRect kSKPViewport = {0,0, 1000,1000}; SKPSrc::SKPSrc(Path path) : fPath(path) {} Error SKPSrc::draw(SkCanvas* canvas) const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTUnref pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap)); if (!pic) { return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); } stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it. canvas->clipRect(kSKPViewport); canvas->drawPicture(pic); return ""; } SkISize SKPSrc::size() const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkISize::Make(0,0); } SkPictInfo info; if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) { return SkISize::Make(0,0); } SkRect viewport = kSKPViewport; if (!viewport.intersect(info.fCullRect)) { return SkISize::Make(0,0); } return viewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { SkAutoTDelete canvas(SkCreateNullCanvas()); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); GPUSink::GPUSink(GrContextFactory::GLContextType ct, GrGLStandard api, int samples, bool diText, bool threaded) : fContextType(ct) , fGpuAPI(api) , fSampleCount(samples) , fUseDIText(diText) , fThreaded(threaded) {} int GPUSink::enclave() const { return fThreaded ? kAnyThread_Enclave : kGPU_Enclave; } void PreAbandonGpuContextErrorHandler(SkError, void*) {} DEFINE_bool(imm, false, "Run gpu configs in immediate mode."); Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextOptions options; if (FLAGS_imm) { options.fImmediateMode = true; } src.modifyGrContextOptions(&options); GrContextFactory factory(options); const SkISize size = src.size(); const SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); SkAutoTUnref surface( NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDIText)); if (!surface) { return "Could not create a surface."; } if (FLAGS_preAbandonGpuContext) { SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr); factory.abandonContexts(); } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); if (FLAGS_gpuStats) { canvas->getGrContext()->dumpCacheStats(log); canvas->getGrContext()->dumpGpuStats(log); } dst->allocPixels(info); canvas->readPixels(dst, 0, 0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { // Print the given DM:Src to a document, breaking on 8.5x11 pages. SkASSERT(doc); int width = src.size().width(), height = src.size().height(); if (FLAGS_multiPage) { const int kLetterWidth = 612, // 8.5 * 72 kLetterHeight = 792; // 11 * 72 const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth), SkIntToScalar(kLetterHeight)); int xPages = ((width - 1) / kLetterWidth) + 1; int yPages = ((height - 1) / kLetterHeight) + 1; for (int y = 0; y < yPages; ++y) { for (int x = 0; x < xPages; ++x) { int w = SkTMin(kLetterWidth, width - (x * kLetterWidth)); int h = SkTMin(kLetterHeight, height - (y * kLetterHeight)); SkCanvas* canvas = doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)); if (!canvas) { return "SkDocument::beginPage(w,h) returned nullptr"; } canvas->clipRect(letter); canvas->translate(-letter.width() * x, -letter.height() * y); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } } } else { SkCanvas* canvas = doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); if (!canvas) { return "SkDocument::beginPage(w,h) returned nullptr"; } Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } if (!doc->close()) { return "SkDocument::close() returned false"; } dst->flush(); return ""; } PDFSink::PDFSink(const char* rasterizer) : fRasterizer(rasterizer) {} Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref doc(SkDocument::CreatePDF(dst)); if (!doc) { return "SkDocument::CreatePDF() returned nullptr"; } SkTArray info; info.emplace_back(SkString("Title"), src.name()); info.emplace_back(SkString("Subject"), SkString("rendering correctness test")); info.emplace_back(SkString("Creator"), SkString("Skia/DM")); info.emplace_back(SkString("Keywords"), SkStringPrintf("Rasterizer:%s;", fRasterizer)); doc->setMetadata(info, nullptr, nullptr); return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ XPSSink::XPSSink() {} Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref doc(SkDocument::CreateXPS(dst)); if (!doc) { return "SkDocument::CreateXPS() returned nullptr"; } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); pic->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink() {} Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTDelete xmlWriter(new SkXMLStreamWriter(dst)); SkAutoTUnref canvas(SkSVGCanvas::Create( SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), xmlWriter)); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType)); dst->eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. // Several examples below. static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, SkISize size, SkFunction draw) { class ProxySrc : public Src { public: ProxySrc(SkISize size, SkFunction draw) : fSize(size), fDraw(draw) {} Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } Name name() const override { sk_throw(); return ""; } // Won't be called. SkISize size() const override { return fSize; } private: SkISize fSize; SkFunction fDraw; }; return sink->draw(ProxySrc(size, draw), bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())); } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkMatrix matrix = fMatrix; SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->concat(matrix); return src.draw(canvas); }); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Error err = fSink->draw(src, bitmap, stream, log); if (!err.isEmpty()) { return err; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return "Cannot upright --matrix."; } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas.drawBitmap(*bitmap, 0, 0, &paint); *bitmap = uprighted; bitmap->lockPixels(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { PipeController controller(canvas, &SkImageDecoder::DecodeMemory); SkGPipeWriter pipe; const uint32_t kFlags = 0; return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height())); }); } Error ViaRemote::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* target) { SkAutoTDelete decoder(SkRemote::NewDecoder(target)); SkAutoTDelete cache(fCache ? SkRemote::NewCachingEncoder(decoder) : nullptr); SkAutoTDelete canvas(SkRemote::NewCanvas(cache ? cache : decoder)); return src.draw(canvas); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaSerialization::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Serialize it and then deserialize it. SkDynamicMemoryWStream wStream; pic->serialize(&wStream); SkAutoTDelete rStream(wStream.detachAsStream()); SkAutoTUnref deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap)); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->drawPicture(deserialized); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : Via(sink) , fW(w) , fH(h) , fFactory(factory) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()), fFactory.get())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecordingAsPicture()); return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { const int xTiles = (size.width() + fW - 1) / fW, yTiles = (size.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTDArray surfaces; surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. SkSurface* s = canvas->newSurface(info); if (!s) { s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. } surfaces.push(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, pic); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { SkAutoTUnref image(surfaces[i+xTiles*j]->newImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } surfaces.unrefAll(); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src into two pictures, then draw the second picture into the wrapped Sink. // This tests that any shortcuts we may take while recording that second picture are legal. Error ViaSecondPicture::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkPictureRecorder recorder; SkAutoTUnref pic; for (int i = 0; i < 2; i++) { Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } pic.reset(recorder.endRecordingAsPicture()); } canvas->drawPicture(pic); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src twice. This can help exercise caching. Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { for (int i = 0; i < 2; i++) { SkAutoCanvasRestore acr(canvas, true/*save now*/); canvas->clear(SK_ColorTRANSPARENT); Error err = src.draw(canvas); if (err.isEmpty()) { return err; } } return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas. // Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op. // This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures. struct DrawsAsSingletonPictures { SkCanvas* fCanvas; const SkDrawableList& fDrawables; template void draw(const T& op, SkCanvas* canvas) { // We must pass SkMatrix::I() as our initial matrix. // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix, // which would have the funky effect of applying transforms over and over. SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I()); d(op); } // Draws get their own picture. template SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) { SkPictureRecorder rec; this->draw(op, rec.beginRecording(SkRect::MakeLargest())); SkAutoTUnref pic(rec.endRecordingAsPicture()); fCanvas->drawPicture(pic); } // We'll just issue non-draws directly. template skstd::enable_if_t operator()(const T& op) { this->draw(op, fCanvas); } }; // Record Src into a picture, then record it into a macro picture with a sub-picture for each draw. // Then play back that macro picture into our wrapped sink. Error ViaSingletonPictures::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { // Use low-level (Skia-private) recording APIs so we can read the SkRecord. SkRecord skr; SkRecorder recorder(&skr, size.width(), size.height()); Error err = src.draw(&recorder); if (!err.isEmpty()) { return err; } // Record our macro-picture, with each draw op as its own sub-picture. SkPictureRecorder macroRec; SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height())); SkAutoTDelete drawables(recorder.detachDrawableList()); const SkDrawableList empty; DrawsAsSingletonPictures drawsAsSingletonPictures = { macroCanvas, drawables ? *drawables : empty, }; for (int i = 0; i < skr.count(); i++) { skr.visit(i, drawsAsSingletonPictures); } SkAutoTUnref macroPic(macroRec.endRecordingAsPicture()); canvas->drawPicture(macroPic); return ""; }); } } // namespace DM