/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPoint.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTileMode.h" #include "include/core/SkTypes.h" #include "include/core/SkVertices.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkRuntimeEffect.h" #include "include/private/SkTDArray.h" #include "include/utils/SkRandom.h" #include "src/core/SkVerticesPriv.h" #include "src/shaders/SkLocalMatrixShader.h" #include "src/utils/SkPatchUtils.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" #include #include static constexpr SkScalar kShaderSize = 40; static sk_sp make_shader1(SkScalar shaderScale) { const SkColor colors[] = { SK_ColorRED, SK_ColorCYAN, SK_ColorGREEN, SK_ColorWHITE, SK_ColorMAGENTA, SK_ColorBLUE, SK_ColorYELLOW, }; const SkPoint pts[] = {{kShaderSize / 4, 0}, {3 * kShaderSize / 4, kShaderSize}}; const SkMatrix localMatrix = SkMatrix::Scale(shaderScale, shaderScale); sk_sp grad = SkGradientShader::MakeLinear(pts, colors, nullptr, SK_ARRAY_COUNT(colors), SkTileMode::kMirror, 0, &localMatrix); // Throw in a couple of local matrix wrappers for good measure. return shaderScale == 1 ? grad : sk_make_sp( sk_make_sp(std::move(grad), SkMatrix::Translate(-10, 0)), SkMatrix::Translate(10, 0)); } static sk_sp make_shader2() { return SkShaders::Color(SK_ColorBLUE); } static sk_sp make_color_filter() { return SkColorFilters::Blend(0xFFAABBCC, SkBlendMode::kDarken); } static constexpr SkScalar kMeshSize = 30; // start with the center of a 3x3 grid of vertices. static constexpr uint16_t kMeshFan[] = { 4, 0, 1, 2, 5, 8, 7, 6, 3, 0 }; static const int kMeshIndexCnt = (int)SK_ARRAY_COUNT(kMeshFan); static const int kMeshVertexCnt = 9; static void fill_mesh(SkPoint pts[kMeshVertexCnt], SkPoint texs[kMeshVertexCnt], SkColor colors[kMeshVertexCnt], SkScalar shaderScale) { pts[0].set(0, 0); pts[1].set(kMeshSize / 2, 3); pts[2].set(kMeshSize, 0); pts[3].set(3, kMeshSize / 2); pts[4].set(kMeshSize / 2, kMeshSize / 2); pts[5].set(kMeshSize - 3, kMeshSize / 2); pts[6].set(0, kMeshSize); pts[7].set(kMeshSize / 2, kMeshSize - 3); pts[8].set(kMeshSize, kMeshSize); const auto shaderSize = kShaderSize * shaderScale; texs[0].set(0, 0); texs[1].set(shaderSize / 2, 0); texs[2].set(shaderSize, 0); texs[3].set(0, shaderSize / 2); texs[4].set(shaderSize / 2, shaderSize / 2); texs[5].set(shaderSize, shaderSize / 2); texs[6].set(0, shaderSize); texs[7].set(shaderSize / 2, shaderSize); texs[8].set(shaderSize, shaderSize); SkRandom rand; for (size_t i = 0; i < kMeshVertexCnt; ++i) { colors[i] = rand.nextU() | 0xFF000000; } } class VerticesGM : public skiagm::GM { SkPoint fPts[kMeshVertexCnt]; SkPoint fTexs[kMeshVertexCnt]; SkColor fColors[kMeshVertexCnt]; sk_sp fShader1; sk_sp fShader2; sk_sp fColorFilter; SkScalar fShaderScale; public: VerticesGM(SkScalar shaderScale) : fShaderScale(shaderScale) {} protected: void onOnceBeforeDraw() override { fill_mesh(fPts, fTexs, fColors, fShaderScale); fShader1 = make_shader1(fShaderScale); fShader2 = make_shader2(); fColorFilter = make_color_filter(); } SkString onShortName() override { SkString name("vertices"); if (fShaderScale != 1) { name.append("_scaled_shader"); } return name; } SkISize onISize() override { return SkISize::Make(975, 1175); } void onDraw(SkCanvas* canvas) override { const SkBlendMode modes[] = { SkBlendMode::kClear, SkBlendMode::kSrc, SkBlendMode::kDst, SkBlendMode::kSrcOver, SkBlendMode::kDstOver, SkBlendMode::kSrcIn, SkBlendMode::kDstIn, SkBlendMode::kSrcOut, SkBlendMode::kDstOut, SkBlendMode::kSrcATop, SkBlendMode::kDstATop, SkBlendMode::kXor, SkBlendMode::kPlus, SkBlendMode::kModulate, SkBlendMode::kScreen, SkBlendMode::kOverlay, SkBlendMode::kDarken, SkBlendMode::kLighten, SkBlendMode::kColorDodge, SkBlendMode::kColorBurn, SkBlendMode::kHardLight, SkBlendMode::kSoftLight, SkBlendMode::kDifference, SkBlendMode::kExclusion, SkBlendMode::kMultiply, SkBlendMode::kHue, SkBlendMode::kSaturation, SkBlendMode::kColor, SkBlendMode::kLuminosity, }; SkPaint paint; canvas->translate(4, 4); int x = 0; for (auto mode : modes) { canvas->save(); for (float alpha : {1.0f, 0.5f}) { for (const auto& cf : {sk_sp(nullptr), fColorFilter}) { for (const auto& shader : {fShader1, fShader2}) { static constexpr struct { bool fHasColors; bool fHasTexs; } kAttrs[] = {{true, false}, {false, true}, {true, true}}; for (auto attrs : kAttrs) { paint.setShader(shader); paint.setColorFilter(cf); paint.setAlphaf(alpha); const SkColor* colors = attrs.fHasColors ? fColors : nullptr; const SkPoint* texs = attrs.fHasTexs ? fTexs : nullptr; auto v = SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, kMeshVertexCnt, fPts, texs, colors, kMeshIndexCnt, kMeshFan); canvas->drawVertices(v, mode, paint); canvas->translate(40, 0); ++x; } } } } canvas->restore(); canvas->translate(0, 40); } } private: using INHERITED = skiagm::GM; }; ///////////////////////////////////////////////////////////////////////////////////// DEF_GM(return new VerticesGM(1);) DEF_GM(return new VerticesGM(1 / kShaderSize);) static void draw_batching(SkCanvas* canvas) { // Triangle fans can't batch so we convert to regular triangles, static constexpr int kNumTris = kMeshIndexCnt - 2; SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, kMeshVertexCnt, 3 * kNumTris, SkVertices::kHasColors_BuilderFlag | SkVertices::kHasTexCoords_BuilderFlag); SkPoint* pts = builder.positions(); SkPoint* texs = builder.texCoords(); SkColor* colors = builder.colors(); fill_mesh(pts, texs, colors, 1); SkTDArray matrices; matrices.push()->reset(); matrices.push()->setTranslate(0, 40); SkMatrix* m = matrices.push(); m->setRotate(45, kMeshSize / 2, kMeshSize / 2); m->postScale(1.2f, .8f, kMeshSize / 2, kMeshSize / 2); m->postTranslate(0, 80); auto shader = make_shader1(1); uint16_t* indices = builder.indices(); for (size_t i = 0; i < kNumTris; ++i) { indices[3 * i] = kMeshFan[0]; indices[3 * i + 1] = kMeshFan[i + 1]; indices[3 * i + 2] = kMeshFan[i + 2]; } canvas->save(); canvas->translate(10, 10); for (bool useShader : {false, true}) { for (bool useTex : {false, true}) { for (const auto& m : matrices) { canvas->save(); canvas->concat(m); SkPaint paint; paint.setShader(useShader ? shader : nullptr); const SkPoint* t = useTex ? texs : nullptr; auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, kMeshVertexCnt, pts, t, colors, kNumTris * 3, indices); canvas->drawVertices(v, SkBlendMode::kModulate, paint); canvas->restore(); } canvas->translate(0, 120); } } canvas->restore(); } // This test exists to exercise batching in the gpu backend. DEF_SIMPLE_GM(vertices_batching, canvas, 100, 500) { draw_batching(canvas); canvas->translate(50, 0); draw_batching(canvas); } using AttrType = SkVertices::Attribute::Type; DEF_SIMPLE_GM(vertices_data, canvas, 512, 256) { for (auto attrType : {AttrType::kFloat4, AttrType::kByte4_unorm}) { SkRect r = SkRect::MakeWH(256, 256); int vcount = 4; // just a quad int icount = 0; SkVertices::Attribute attrs[] = { attrType }; SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, vcount, icount, attrs, 1); r.toQuad(builder.positions()); if (attrType == AttrType::kFloat4) { SkV4* col = (SkV4*)builder.customData(); col[0] = {1, 0, 0, 1}; // red col[1] = {0, 1, 0, 1}; // green col[2] = {0, 0, 1, 1}; // blue col[3] = {0.5, 0.5, 0.5, 1}; // gray } else { uint32_t* col = (uint32_t*)builder.customData(); col[0] = 0xFF0000FF; col[1] = 0xFF00FF00; col[2] = 0xFFFF0000; col[3] = 0xFF7F7F7F; } SkPaint paint; const char* gProg = R"( varying float4 vtx_color; half4 main(float2 p) { return half4(vtx_color); } )"; auto[effect, errorText] = SkRuntimeEffect::Make(SkString(gProg)); if (!effect) { SK_ABORT("RuntimeEffect error: %s\n", errorText.c_str()); } paint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, true)); canvas->drawVertices(builder.detach(), paint); canvas->translate(r.width(), 0); } } // Test case for skbug.com/10069. We need to draw the vertices twice (with different matrices) to // trigger the bug. DEF_SIMPLE_GM(vertices_perspective, canvas, 256, 256) { SkPaint paint; paint.setShader(ToolUtils::create_checkerboard_shader(SK_ColorBLACK, SK_ColorWHITE, 32)); SkRect r = SkRect::MakeWH(128, 128); SkPoint pos[4]; r.toQuad(pos); auto verts = SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pos, pos, nullptr); SkMatrix persp; persp.setPerspY(SK_Scalar1 / 100); canvas->save(); canvas->concat(persp); canvas->drawRect(r, paint); canvas->restore(); canvas->save(); canvas->translate(r.width(), 0); canvas->concat(persp); canvas->drawRect(r, paint); canvas->restore(); canvas->save(); canvas->translate(0, r.height()); canvas->concat(persp); canvas->drawVertices(verts, paint); canvas->restore(); canvas->save(); canvas->translate(r.width(), r.height()); canvas->concat(persp); canvas->drawVertices(verts, paint); canvas->restore(); } DEF_SIMPLE_GM(vertices_data_lerp, canvas, 256, 256) { SkPoint pts[12] = {{0, 0}, {85, 0}, {171, 0}, {256, 0}, {256, 85}, {256, 171}, {256, 256}, {171, 256}, {85, 256}, {0, 256}, {0, 171}, {0, 85}}; auto patchVerts = SkPatchUtils::MakeVertices(pts, nullptr, nullptr, 12, 12); SkVerticesPriv pv(patchVerts->priv()); SkVertices::Attribute attrs[1] = { AttrType::kFloat }; SkVertices::Builder builder(pv.mode(), pv.vertexCount(), pv.indexCount(), attrs, 1); memcpy(builder.positions(), pv.positions(), pv.vertexCount() * sizeof(SkPoint)); memcpy(builder.indices(), pv.indices(), pv.indexCount() * sizeof(uint16_t)); SkRandom rnd; float* lerpData = (float*)builder.customData(); for (int i = 0; i < pv.vertexCount(); ++i) { lerpData[i] = rnd.nextBool() ? 1.0f : 0.0f; } auto verts = builder.detach(); SkPaint paint; const char* gProg = R"( in shader c0; in shader c1; varying float vtx_lerp; half4 main(float2 p) { half4 col0 = sample(c0, p); half4 col1 = sample(c1, p); return mix(col0, col1, half(vtx_lerp)); } )"; auto [effect, errorText] = SkRuntimeEffect::Make(SkString(gProg)); SkMatrix scale = SkMatrix::Scale(2, 2); sk_sp children[] = { GetResourceAsImage("images/mandrill_256.png")->makeShader(), GetResourceAsImage("images/color_wheel.png")->makeShader(scale), }; paint.setShader(effect->makeShader(nullptr, children, 2, nullptr, false)); canvas->drawVertices(verts, paint); } static constexpr SkScalar kSin60 = 0.8660254f; // sqrt(3) / 2 static constexpr SkPoint kHexVerts[] = { { 0, 0 }, { 0, -1 }, { kSin60, -0.5f }, { kSin60, 0.5f }, { 0, 1 }, { -kSin60, 0.5f }, { -kSin60, -0.5f }, { 0, -1 }, }; static constexpr SkColor4f kColors[] = { SkColors::kWhite, SkColors::kRed, SkColors::kYellow, SkColors::kGreen, SkColors::kCyan, SkColors::kBlue, SkColors::kMagenta, SkColors::kRed, }; using Attr = SkVertices::Attribute; DEF_SIMPLE_GM(vertices_custom_colors, canvas, 400, 200) { ToolUtils::draw_checkerboard(canvas); auto draw = [=](SkScalar cx, SkScalar cy, SkVertices::Builder& builder, const SkPaint& paint) { memcpy(builder.positions(), kHexVerts, sizeof(kHexVerts)); canvas->save(); canvas->translate(cx, cy); canvas->scale(45, 45); canvas->drawVertices(builder.detach(), paint); canvas->restore(); }; auto transColor = [](int i) { return SkColor4f { kColors[i].fR, kColors[i].fG, kColors[i].fB, i % 2 ? 0.5f : 1.0f }; }; // Fixed function SkVertices, opaque { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, SkVertices::kHasColors_BuilderFlag); for (int i = 0; i < 8; ++i) { builder.colors()[i] = kColors[i].toSkColor(); } draw(50, 50, builder, SkPaint()); } // Fixed function SkVertices, w/transparency { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, SkVertices::kHasColors_BuilderFlag); for (int i = 0; i < 8; ++i) { builder.colors()[i] = transColor(i).toSkColor(); } draw(50, 150, builder, SkPaint()); } const char* gProg = R"( varying half4 vtx_color; half4 main(float2 p) { return vtx_color; } )"; SkPaint skslPaint; auto [effect, errorText] = SkRuntimeEffect::Make(SkString(gProg)); skslPaint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, false)); Attr byteColorAttr(Attr::Type::kByte4_unorm, Attr::Usage::kColor); Attr float4ColorAttr(Attr::Type::kFloat4, Attr::Usage::kColor); Attr float3ColorAttr(Attr::Type::kFloat3, Attr::Usage::kColor); // Custom vertices, byte colors, opaque { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &byteColorAttr, 1); for (int i = 0; i < 8; ++i) { ((uint32_t*)builder.customData())[i] = kColors[i].toBytes_RGBA(); } draw(150, 50, builder, skslPaint); } // Custom vertices, byte colors, w/transparency { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &byteColorAttr, 1); for (int i = 0; i < 8; ++i) { ((uint32_t*)builder.customData())[i] = transColor(i).toBytes_RGBA(); } draw(150, 150, builder, skslPaint); } // Custom vertices, float4 colors, opaque { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float4ColorAttr, 1); for (int i = 0; i < 8; ++i) { ((SkColor4f*)builder.customData())[i] = kColors[i]; } draw(250, 50, builder, skslPaint); } // Custom vertices, float4 colors, w/transparency { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float4ColorAttr, 1); SkColor4f* clr = (SkColor4f*)builder.customData(); for (int i = 0; i < 8; ++i) { clr[i] = transColor(i); } draw(250, 150, builder, skslPaint); } // Custom vertices, float3 colors, opaque { SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float3ColorAttr, 1); for (int i = 0; i < 8; ++i) { ((SkV3*)builder.customData())[i] = { kColors[i].fR, kColors[i].fG, kColors[i].fB }; } draw(350, 50, builder, skslPaint); } } static sk_sp make_cone(Attr::Usage u, const char* markerName) { Attr attr(Attr::Type::kFloat3, u, markerName); constexpr int kPerimeterVerts = 64; // +1 for the center, +1 to repeat the first perimeter point (so we draw a complete circle) constexpr int kNumVerts = kPerimeterVerts + 2; SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, kNumVerts, /*indexCount=*/0, &attr, /*attrCount=*/1); SkPoint* pos = builder.positions(); SkPoint3* vec = static_cast(builder.customData()); pos[0] = { 0, 0 }; vec[0] = { 0, 0, 1 }; for (int i = 0; i < kPerimeterVerts + 1; ++i) { SkScalar t = (i / SkIntToScalar(kPerimeterVerts)) * 2 * SK_ScalarPI; SkScalar s = SkScalarSin(t), c = SkScalarCos(t); pos[i + 1] = { c, s }; vec[i + 1] = { c, s, 0 }; } return builder.detach(); } DEF_SIMPLE_GM(vertices_custom_matrices, canvas, 400, 400) { ToolUtils::draw_checkerboard(canvas); const char* kViewSpace = "local_to_view"; const char* kWorldSpace = "local_to_world"; const char* kLocalSpace = "local_to_local"; auto draw = [=](SkScalar cx, SkScalar cy, sk_sp vertices, const char* prog, SkScalar squish = 1.0f) { SkPaint paint; auto [effect, errorText] = SkRuntimeEffect::Make(SkString(prog)); paint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, false)); canvas->save(); // Device space: mesh is upright, translated to its "cell" canvas->translate(cx, cy); // View (camera) space: Mesh is upright, centered on origin, device scale canvas->markCTM(kViewSpace); canvas->rotate(90); // World space: Mesh is sideways, centered on origin, device scale (possibly squished) canvas->markCTM(kWorldSpace); canvas->rotate(-90); canvas->scale(45, 45 * squish); // Local space: Mesh is upright, centered on origin, unit scale canvas->markCTM(kLocalSpace); canvas->drawVertices(vertices, paint); canvas->restore(); }; const char* vectorProg = R"( varying float3 vtx_vec; half4 main(float2 p) { return (half3(vtx_vec) * 0.5 + 0.5).rgb1; })"; // raw, local vectors, normals, and positions should all look the same (no real transform) draw(50, 50, make_cone(Attr::Usage::kRaw, nullptr), vectorProg); draw(150, 50, make_cone(Attr::Usage::kVector, kLocalSpace), vectorProg); draw(250, 50, make_cone(Attr::Usage::kNormalVector, kLocalSpace), vectorProg); draw(350, 50, make_cone(Attr::Usage::kPosition, kLocalSpace), vectorProg); // world-space vectors and normals are rotated 90 degrees, positions are centered but scaled up draw(150, 150, make_cone(Attr::Usage::kVector, kWorldSpace), vectorProg); draw(250, 150, make_cone(Attr::Usage::kNormalVector, kWorldSpace), vectorProg); draw(350, 150, make_cone(Attr::Usage::kPosition, kWorldSpace), vectorProg); // Squished vectors are "wrong", but normals are correct (because we use the inverse transpose) // Positions remain scaled up (saturated), but otherwise correct draw(150, 250, make_cone(Attr::Usage::kVector, kWorldSpace), vectorProg, 0.5f); draw(250, 250, make_cone(Attr::Usage::kNormalVector, kWorldSpace), vectorProg, 0.5f); draw(350, 250, make_cone(Attr::Usage::kPosition, kWorldSpace), vectorProg, 0.5f); draw( 50, 350, make_cone(Attr::Usage::kVector, nullptr), vectorProg, 0.5f); draw(150, 350, make_cone(Attr::Usage::kNormalVector, nullptr), vectorProg, 0.5f); // For canvas-space positions, color them according to their position relative to the center. // We do this test twice, with and without saveLayer. That ensures that we get the canvas CTM, // not just a local-to-device matrix, which exposes effect authors to an implementation detail. const char* ctmPositionProg250 = R"( varying float3 vtx_pos; half4 main(float2 p) { return ((half3(vtx_pos) - half3(250, 350, 0)) / 50 + 0.5).rgb1; } )"; draw(250, 350, make_cone(Attr::Usage::kPosition, nullptr), ctmPositionProg250, 0.5f); const char* ctmPositionProg350 = R"( varying float3 vtx_pos; half4 main(float2 p) { return ((half3(vtx_pos) - half3(350, 350, 0)) / 50 + 0.5).rgb1; } )"; canvas->saveLayer({ 300, 300, 400, 400 }, nullptr); draw(350, 350, make_cone(Attr::Usage::kPosition, nullptr), ctmPositionProg350, 0.5f); canvas->restore(); }