/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTemplates_DEFINED #define SkTemplates_DEFINED #include "../private/SkTLogic.h" #include "SkMath.h" #include "SkTypes.h" #include #include /** \file SkTemplates.h This file contains light-weight template classes for type-safe and exception-safe resource management. */ /** * Marks a local variable as known to be unused (to avoid warnings). * Note that this does *not* prevent the local variable from being optimized away. */ template inline void sk_ignore_unused_variable(const T&) { } namespace skstd { template inline remove_reference_t&& move(T&& t) { return static_cast&&>(t); } template inline T&& forward(remove_reference_t& t) /*noexcept*/ { return static_cast(t); } template inline T&& forward(remove_reference_t&& t) /*noexcept*/ { static_assert(!is_lvalue_reference::value, "Forwarding an rvalue reference as an lvalue reference is not allowed."); return static_cast(t); } template add_rvalue_reference_t declval(); } // namespace skstd /** * Returns a pointer to a D which comes immediately after S[count]. */ template static D* SkTAfter(S* ptr, size_t count = 1) { return reinterpret_cast(ptr + count); } /** * Returns a pointer to a D which comes byteOffset bytes after S. */ template static D* SkTAddOffset(S* ptr, size_t byteOffset) { // The intermediate char* has the same cv-ness as D as this produces better error messages. // This relies on the fact that reinterpret_cast can add constness, but cannot remove it. return reinterpret_cast(reinterpret_cast*>(ptr) + byteOffset); } /** \class SkAutoTCallVProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallVProc : SkNoncopyable { public: SkAutoTCallVProc(T* obj): fObj(obj) {} ~SkAutoTCallVProc() { if (fObj) P(fObj); } operator T*() const { return fObj; } T* operator->() const { SkASSERT(fObj); return fObj; } T* detach() { T* obj = fObj; fObj = NULL; return obj; } void reset(T* obj = NULL) { if (fObj != obj) { if (fObj) { P(fObj); } fObj = obj; } } private: T* fObj; }; /** \class SkAutoTCallIProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallIProc : SkNoncopyable { public: SkAutoTCallIProc(T* obj): fObj(obj) {} ~SkAutoTCallIProc() { if (fObj) P(fObj); } operator T*() const { return fObj; } T* operator->() const { SkASSERT(fObj); return fObj; } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; /** \class SkAutoTDelete An SkAutoTDelete is like a T*, except that the destructor of SkAutoTDelete automatically deletes the pointer it holds (if any). That is, SkAutoTDelete owns the T object that it points to. Like a T*, an SkAutoTDelete may hold either NULL or a pointer to a T object. Also like T*, SkAutoTDelete is thread-compatible, and once you dereference it, you get the threadsafety guarantees of T. The size of a SkAutoTDelete is small: sizeof(SkAutoTDelete) == sizeof(T*) */ template class SkAutoTDelete : SkNoncopyable { public: SkAutoTDelete(T* obj = NULL) : fObj(obj) {} ~SkAutoTDelete() { delete fObj; } T* get() const { return fObj; } operator T*() const { return fObj; } T& operator*() const { SkASSERT(fObj); return *fObj; } T* operator->() const { SkASSERT(fObj); return fObj; } void reset(T* obj) { if (fObj != obj) { delete fObj; fObj = obj; } } /** * Delete the owned object, setting the internal pointer to NULL. */ void free() { delete fObj; fObj = NULL; } /** * Transfer ownership of the object to the caller, setting the internal * pointer to NULL. Note that this differs from get(), which also returns * the pointer, but it does not transfer ownership. */ T* detach() { T* obj = fObj; fObj = NULL; return obj; } void swap(SkAutoTDelete* that) { SkTSwap(fObj, that->fObj); } private: T* fObj; }; // Calls ~T() in the destructor. template class SkAutoTDestroy : SkNoncopyable { public: SkAutoTDestroy(T* obj = NULL) : fObj(obj) {} ~SkAutoTDestroy() { if (fObj) { fObj->~T(); } } T* get() const { return fObj; } T& operator*() const { SkASSERT(fObj); return *fObj; } T* operator->() const { SkASSERT(fObj); return fObj; } private: T* fObj; }; template class SkAutoTDeleteArray : SkNoncopyable { public: SkAutoTDeleteArray(T array[]) : fArray(array) {} ~SkAutoTDeleteArray() { delete[] fArray; } T* get() const { return fArray; } void free() { delete[] fArray; fArray = NULL; } T* detach() { T* array = fArray; fArray = NULL; return array; } void reset(T array[]) { if (fArray != array) { delete[] fArray; fArray = array; } } private: T* fArray; }; /** Allocate an array of T elements, and free the array in the destructor */ template class SkAutoTArray : SkNoncopyable { public: SkAutoTArray() { fArray = NULL; SkDEBUGCODE(fCount = 0;) } /** Allocate count number of T elements */ explicit SkAutoTArray(int count) { SkASSERT(count >= 0); fArray = NULL; if (count) { fArray = new T[count]; } SkDEBUGCODE(fCount = count;) } /** Reallocates given a new count. Reallocation occurs even if new count equals old count. */ void reset(int count) { delete[] fArray; SkASSERT(count >= 0); fArray = NULL; if (count) { fArray = new T[count]; } SkDEBUGCODE(fCount = count;) } ~SkAutoTArray() { delete[] fArray; } /** Return the array of T elements. Will be NULL if count == 0 */ T* get() const { return fArray; } /** Return the nth element in the array */ T& operator[](int index) const { SkASSERT((unsigned)index < (unsigned)fCount); return fArray[index]; } void swap(SkAutoTArray& other) { SkTSwap(fArray, other.fArray); SkDEBUGCODE(SkTSwap(fCount, other.fCount)); } private: T* fArray; SkDEBUGCODE(int fCount;) }; /** Wraps SkAutoTArray, with room for up to N elements preallocated */ template class SkAutoSTArray : SkNoncopyable { public: /** Initialize with no objects */ SkAutoSTArray() { fArray = NULL; fCount = 0; } /** Allocate count number of T elements */ SkAutoSTArray(int count) { fArray = NULL; fCount = 0; this->reset(count); } ~SkAutoSTArray() { this->reset(0); } /** Destroys previous objects in the array and default constructs count number of objects */ void reset(int count) { T* start = fArray; T* iter = start + fCount; while (iter > start) { (--iter)->~T(); } if (fCount != count) { if (fCount > N) { // 'fArray' was allocated last time so free it now SkASSERT((T*) fStorage != fArray); sk_free(fArray); } if (count > N) { const uint64_t size64 = sk_64_mul(count, sizeof(T)); const size_t size = static_cast(size64); if (size != size64) { sk_out_of_memory(); } fArray = (T*) sk_malloc_throw(size); } else if (count > 0) { fArray = (T*) fStorage; } else { fArray = NULL; } fCount = count; } iter = fArray; T* stop = fArray + count; while (iter < stop) { new (iter++) T; } } /** Return the number of T elements in the array */ int count() const { return fCount; } /** Return the array of T elements. Will be NULL if count == 0 */ T* get() const { return fArray; } /** Return the nth element in the array */ T& operator[](int index) const { SkASSERT(index < fCount); return fArray[index]; } private: int fCount; T* fArray; // since we come right after fArray, fStorage should be properly aligned char fStorage[N * sizeof(T)]; }; /** Manages an array of T elements, freeing the array in the destructor. * Does NOT call any constructors/destructors on T (T must be POD). */ template class SkAutoTMalloc : SkNoncopyable { public: /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */ explicit SkAutoTMalloc(T* ptr = NULL) { fPtr = ptr; } /** Allocates space for 'count' Ts. */ explicit SkAutoTMalloc(size_t count) { fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW); } ~SkAutoTMalloc() { sk_free(fPtr); } /** Resize the memory area pointed to by the current ptr preserving contents. */ void realloc(size_t count) { fPtr = reinterpret_cast(sk_realloc_throw(fPtr, count * sizeof(T))); } /** Resize the memory area pointed to by the current ptr without preserving contents. */ void reset(size_t count) { sk_free(fPtr); fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW); } T* get() const { return fPtr; } operator T*() { return fPtr; } operator const T*() const { return fPtr; } T& operator[](int index) { return fPtr[index]; } const T& operator[](int index) const { return fPtr[index]; } /** * Transfer ownership of the ptr to the caller, setting the internal * pointer to NULL. Note that this differs from get(), which also returns * the pointer, but it does not transfer ownership. */ T* detach() { T* ptr = fPtr; fPtr = NULL; return ptr; } private: T* fPtr; }; template class SkAutoSTMalloc : SkNoncopyable { public: SkAutoSTMalloc() : fPtr(fTStorage) {} SkAutoSTMalloc(size_t count) { if (count > N) { fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); } else { fPtr = fTStorage; } } ~SkAutoSTMalloc() { if (fPtr != fTStorage) { sk_free(fPtr); } } // doesn't preserve contents T* reset(size_t count) { if (fPtr != fTStorage) { sk_free(fPtr); } if (count > N) { fPtr = (T*)sk_malloc_throw(count * sizeof(T)); } else { fPtr = fTStorage; } return fPtr; } T* get() const { return fPtr; } operator T*() { return fPtr; } operator const T*() const { return fPtr; } T& operator[](int index) { return fPtr[index]; } const T& operator[](int index) const { return fPtr[index]; } // Reallocs the array, can be used to shrink the allocation. Makes no attempt to be intelligent void realloc(size_t count) { if (count > N) { if (fPtr == fTStorage) { fPtr = (T*)sk_malloc_throw(count * sizeof(T)); memcpy(fPtr, fTStorage, N * sizeof(T)); } else { fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T)); } } else if (fPtr != fTStorage) { fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T)); } } private: T* fPtr; union { uint32_t fStorage32[(N*sizeof(T) + 3) >> 2]; T fTStorage[1]; // do NOT want to invoke T::T() }; }; ////////////////////////////////////////////////////////////////////////////////////////////////// /** * Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will * safely destroy (and free if it was dynamically allocated) the object. */ template void SkInPlaceDeleteCheck(T* obj, void* storage) { if (storage == obj) { obj->~T(); } else { delete obj; } } /** * Allocates T, using storage if it is large enough, and allocating on the heap (via new) if * storage is not large enough. * * obj = SkInPlaceNewCheck(storage, size); * ... * SkInPlaceDeleteCheck(obj, storage); */ template T* SkInPlaceNewCheck(void* storage, size_t size) { return (sizeof(T) <= size) ? new (storage) T : new T; } template T* SkInPlaceNewCheck(void* storage, size_t size, const A1& a1, const A2& a2, const A3& a3) { return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3) : new T(a1, a2, a3); } /** * Reserves memory that is aligned on double and pointer boundaries. * Hopefully this is sufficient for all practical purposes. */ template class SkAlignedSStorage : SkNoncopyable { public: size_t size() const { return N; } void* get() { return fData; } const void* get() const { return fData; } private: union { void* fPtr; double fDouble; char fData[N]; }; }; /** * Reserves memory that is aligned on double and pointer boundaries. * Hopefully this is sufficient for all practical purposes. Otherwise, * we have to do some arcane trickery to determine alignment of non-POD * types. Lifetime of the memory is the lifetime of the object. */ template class SkAlignedSTStorage : SkNoncopyable { public: /** * Returns void* because this object does not initialize the * memory. Use placement new for types that require a cons. */ void* get() { return fStorage.get(); } const void* get() const { return fStorage.get(); } private: SkAlignedSStorage fStorage; }; #endif