/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #include "Test.h" #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpuResource.h" #include "GrMemoryPool.h" #include "GrProxyProvider.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "ops/GrMeshDrawOp.h" #include "ops/GrRectOpFactory.h" #include namespace { class TestOp : public GrMeshDrawOp { public: DEFINE_OP_CLASS_ID static std::unique_ptr Make(GrContext* context, std::unique_ptr fp) { GrOpMemoryPool* pool = context->contextPriv().opMemoryPool(); return pool->allocate(std::move(fp)); } const char* name() const override { return "TestOp"; } void visitProxies(const VisitProxyFunc& func) const override { fProcessors.visitProxies(func); } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override { static constexpr GrProcessorAnalysisColor kUnknownColor; GrColor overrideColor; fProcessors.finalize(kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, false, caps, &overrideColor); return RequiresDstTexture::kNo; } private: friend class ::GrOpMemoryPool; // for ctor TestOp(std::unique_ptr fp) : INHERITED(ClassID()), fProcessors(std::move(fp)) { this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo); } void onPrepareDraws(Target* target) override { return; } GrProcessorSet fProcessors; typedef GrMeshDrawOp INHERITED; }; /** * FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts * of resources owned by child FPs. */ class TestFP : public GrFragmentProcessor { public: static std::unique_ptr Make(std::unique_ptr child) { return std::unique_ptr(new TestFP(std::move(child))); } static std::unique_ptr Make(const SkTArray>& proxies, const SkTArray>& buffers) { return std::unique_ptr(new TestFP(proxies, buffers)); } const char* name() const override { return "test"; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { // We don't really care about reusing these. static int32_t gKey = 0; b->add32(sk_atomic_inc(&gKey)); } std::unique_ptr clone() const override { return std::unique_ptr(new TestFP(*this)); } private: TestFP(const SkTArray>& proxies, const SkTArray>& buffers) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { for (const auto& proxy : proxies) { fSamplers.emplace_back(proxy); } this->setTextureSamplerCnt(fSamplers.count()); } TestFP(std::unique_ptr child) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { this->registerChildProcessor(std::move(child)); } explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) { for (int i = 0; i < that.fSamplers.count(); ++i) { fSamplers.emplace_back(that.fSamplers[i]); } for (int i = 0; i < that.numChildProcessors(); ++i) { this->registerChildProcessor(that.childProcessor(i).clone()); } this->setTextureSamplerCnt(fSamplers.count()); } virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { class TestGLSLFP : public GrGLSLFragmentProcessor { public: TestGLSLFP() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); } private: }; return new TestGLSLFP(); } bool onIsEqual(const GrFragmentProcessor&) const override { return false; } const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; } GrTAllocator fSamplers; typedef GrFragmentProcessor INHERITED; }; } template inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = resource->fRefCnt; *readCnt = resource->fPendingReads; *writeCnt = resource->fPendingWrites; } void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = proxy->getBackingRefCnt_TestOnly(); *readCnt = proxy->getPendingReadCnt_TestOnly(); *writeCnt = proxy->getPendingWriteCnt_TestOnly(); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); GrSurfaceDesc desc; desc.fWidth = 10; desc.fHeight = 10; desc.fConfig = kRGBA_8888_GrPixelConfig; for (bool makeClone : {false, true}) { for (int parentCnt = 0; parentCnt < 2; parentCnt++) { sk_sp renderTargetContext( context->contextPriv().makeDeferredRenderTargetContext( SkBackingFit::kApprox, 1, 1, kRGBA_8888_GrPixelConfig, nullptr)); { sk_sp proxy1 = proxyProvider->createProxy( desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp proxy2 = proxyProvider->createProxy( desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp proxy3 = proxyProvider->createProxy( desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp proxy4 = proxyProvider->createProxy( desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); { SkTArray> proxies; SkTArray> buffers; proxies.push_back(proxy1); auto fp = TestFP::Make(std::move(proxies), std::move(buffers)); for (int i = 0; i < parentCnt; ++i) { fp = TestFP::Make(std::move(fp)); } std::unique_ptr clone; if (makeClone) { clone = fp->clone(); } std::unique_ptr op(TestOp::Make(context, std::move(fp))); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); if (clone) { op = TestOp::Make(context, std::move(clone)); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); } } int refCnt, readCnt, writeCnt; testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); // IO counts should be double if there is a clone of the FP. int ioRefMul = makeClone ? 2 : 1; REPORTER_ASSERT(reporter, -1 == refCnt); REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); context->flush(); testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); } } } } // This test uses the random GrFragmentProcessor test factory, which relies on static initializers. #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #include "SkCommandLineFlags.h" DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?"); #if GR_TEST_UTILS static GrColor input_texel_color(int i, int j) { GrColor color = GrColorPackRGBA((uint8_t)j, (uint8_t)(i + j), (uint8_t)(2 * j - i), (uint8_t)i); return GrPremulColor(color); } static GrColor4f input_texel_color4f(int i, int j) { return GrColor4f::FromGrColor(input_texel_color(i, j)); } void test_draw_op(GrContext* context, GrRenderTargetContext* rtc, std::unique_ptr fp, sk_sp inputDataProxy) { GrPaint paint; paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I()); paint.addColorFragmentProcessor(std::move(fp)); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); auto op = GrRectOpFactory::MakeNonAAFill(context, std::move(paint), SkMatrix::I(), SkRect::MakeWH(rtc->width(), rtc->height()), GrAAType::kNone); rtc->addDrawOp(GrNoClip(), std::move(op)); } /** Initializes the two test texture proxies that are available to the FP test factories. */ bool init_test_textures(GrProxyProvider* proxyProvider, SkRandom* random, sk_sp proxies[2]) { static const int kTestTextureSize = 256; { // Put premul data into the RGBA texture that the test FPs can optionally use. std::unique_ptr rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]); for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { rgbaData[kTestTextureSize * y + x] = input_texel_color(random->nextULessThan(256), random->nextULessThan(256)); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes()); sk_sp img = SkImage::MakeRasterCopy(pixmap); proxies[0] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } { // Put random values into the alpha texture that the test FPs can optionally use. std::unique_ptr alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]); for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { alphaData[kTestTextureSize * y + x] = random->nextULessThan(256); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kAlpha_8_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes()); sk_sp img = SkImage::MakeRasterCopy(pixmap); proxies[1] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } return proxies[0] && proxies[1]; } // Creates a texture of premul colors used as the output of the fragment processor that precedes // the fragment processor under test. Color values are those provided by input_texel_color(). sk_sp make_input_texture(GrProxyProvider* proxyProvider, int width, int height) { std::unique_ptr data(new GrColor[width * height]); for (int y = 0; y < width; ++y) { for (int x = 0; x < height; ++x) { data.get()[width * y + x] = input_texel_color(x, y); } } SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, data.get(), ii.minRowBytes()); sk_sp img = SkImage::MakeRasterCopy(pixmap); return proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); auto resourceProvider = context->contextPriv().resourceProvider(); using FPFactory = GrFragmentProcessorTestFactory; uint32_t seed = 0; if (FLAGS_randomProcessorTest) { std::random_device rd; seed = rd(); } // If a non-deterministic bot fails this test, check the output to see what seed it used, then // hard-code that value here: SkRandom random(seed); // Make the destination context for the test. static constexpr int kRenderSize = 256; sk_sp rtc = context->contextPriv().makeDeferredRenderTargetContext( SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr); sk_sp proxies[2]; if (!init_test_textures(proxyProvider, &random, proxies)) { ERRORF(reporter, "Could not create test textures"); return; } GrProcessorTestData testData(&random, context, rtc.get(), proxies); auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize); std::unique_ptr readData(new GrColor[kRenderSize * kRenderSize]); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < FPFactory::Count(); ++i) { int timesToInvokeFactory = 5; // Increase the number of attempts if the FP has child FPs since optimizations likely depend // on child optimizations being present. std::unique_ptr fp = FPFactory::MakeIdx(i, &testData); for (int j = 0; j < fp->numChildProcessors(); ++j) { // This value made a reasonable trade off between time and coverage when this test was // written. timesToInvokeFactory *= FPFactory::Count() / 2; } for (int j = 0; j < timesToInvokeFactory; ++j) { fp = FPFactory::MakeIdx(i, &testData); if (!fp->instantiate(resourceProvider)) { continue; } if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && !fp->compatibleWithCoverageAsAlpha()) { continue; } // Since we transfer away ownership of the original FP, we make a clone. auto clone = fp->clone(); test_draw_op(context, rtc.get(), std::move(fp), inputTexture); memset(readData.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize); rtc->readPixels(SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType), readData.get(), 0, 0, 0); bool passing = true; if (0) { // Useful to see what FPs are being tested. SkString children; for (int c = 0; c < clone->numChildProcessors(); ++c) { if (!c) { children.append("("); } children.append(clone->name()); children.append(c == clone->numChildProcessors() - 1 ? ")" : ", "); } SkDebugf("%s %s\n", clone->name(), children.c_str()); } for (int y = 0; y < kRenderSize && passing; ++y) { for (int x = 0; x < kRenderSize && passing; ++x) { GrColor input = input_texel_color(x, y); GrColor output = readData.get()[y * kRenderSize + x]; if (clone->compatibleWithCoverageAsAlpha()) { // A modulating processor is allowed to modulate either the input color or // just the input alpha. bool legalColorModulation = GrColorUnpackA(output) <= GrColorUnpackA(input) && GrColorUnpackR(output) <= GrColorUnpackR(input) && GrColorUnpackG(output) <= GrColorUnpackG(input) && GrColorUnpackB(output) <= GrColorUnpackB(input); bool legalAlphaModulation = GrColorUnpackA(output) <= GrColorUnpackA(input) && GrColorUnpackR(output) <= GrColorUnpackA(input) && GrColorUnpackG(output) <= GrColorUnpackA(input) && GrColorUnpackB(output) <= GrColorUnpackA(input); if (!legalColorModulation && !legalAlphaModulation) { ERRORF(reporter, "\"Modulating\" processor %s made color/alpha value larger. " "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", clone->name(), input, output, x, y); passing = false; } } GrColor4f input4f = input_texel_color4f(x, y); GrColor4f output4f = GrColor4f::FromGrColor(output); GrColor4f expected4f; if (clone->hasConstantOutputForConstantInput(input4f, &expected4f)) { float rDiff = fabsf(output4f.fRGBA[0] - expected4f.fRGBA[0]); float gDiff = fabsf(output4f.fRGBA[1] - expected4f.fRGBA[1]); float bDiff = fabsf(output4f.fRGBA[2] - expected4f.fRGBA[2]); float aDiff = fabsf(output4f.fRGBA[3] - expected4f.fRGBA[3]); static constexpr float kTol = 4 / 255.f; if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { ERRORF(reporter, "Processor %s claimed output for const input doesn't match " "actual output. Error: %f, Tolerance: %f, input: (%f, %f, %f, " "%f), actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f)", clone->name(), SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol, input4f.fRGBA[0], input4f.fRGBA[1], input4f.fRGBA[2], input4f.fRGBA[3], output4f.fRGBA[0], output4f.fRGBA[1], output4f.fRGBA[2], output4f.fRGBA[3], expected4f.fRGBA[0], expected4f.fRGBA[1], expected4f.fRGBA[2], expected4f.fRGBA[3]); passing = false; } } if (GrColorIsOpaque(input) && clone->preservesOpaqueInput() && !GrColorIsOpaque(output)) { ERRORF(reporter, "Processor %s claimed opaqueness is preserved but it is not. Input: " "0x%08x, Output: 0x%08x.", clone->name(), input, output); passing = false; } if (!passing) { ERRORF(reporter, "Seed: 0x%08x, Processor details: %s", seed, clone->dumpInfo().c_str()); } } } } } } // Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their // progenitors. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); auto resourceProvider = context->contextPriv().resourceProvider(); SkRandom random; // Make the destination context for the test. static constexpr int kRenderSize = 1024; sk_sp rtc = context->contextPriv().makeDeferredRenderTargetContext( SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr); sk_sp proxies[2]; if (!init_test_textures(proxyProvider, &random, proxies)) { ERRORF(reporter, "Could not create test textures"); return; } GrProcessorTestData testData(&random, context, rtc.get(), proxies); auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize); std::unique_ptr readData1(new GrColor[kRenderSize * kRenderSize]); std::unique_ptr readData2(new GrColor[kRenderSize * kRenderSize]); auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { static constexpr int kTimesToInvokeFactory = 10; for (int j = 0; j < kTimesToInvokeFactory; ++j) { auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData); auto clone = fp->clone(); if (!clone) { ERRORF(reporter, "Clone of processor %s failed.", fp->name()); continue; } const char* name = fp->name(); if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) { continue; } REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name())); REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() == clone->compatibleWithCoverageAsAlpha()); REPORTER_ASSERT(reporter, fp->isEqual(*clone)); REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput()); REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() == clone->hasConstantOutputForConstantInput()); REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors()); REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords()); // Draw with original and read back the results. test_draw_op(context, rtc.get(), std::move(fp), inputTexture); memset(readData1.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize); rtc->readPixels(readInfo, readData1.get(), 0, 0, 0); // Draw with clone and read back the results. test_draw_op(context, rtc.get(), std::move(clone), inputTexture); memset(readData2.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize); rtc->readPixels(readInfo, readData2.get(), 0, 0, 0); // Check that the results are the same. bool passing = true; for (int y = 0; y < kRenderSize && passing; ++y) { for (int x = 0; x < kRenderSize && passing; ++x) { int idx = y * kRenderSize + x; if (readData1[idx] != readData2[idx]) { ERRORF(reporter, "Processor %s made clone produced different output. " "Input color: 0x%08x, Original Output Color: 0x%08x, " "Clone Output Color: 0x%08x..", name, input_texel_color(x, y), readData1[idx], readData2[idx]); passing = false; } } } } } } #endif // GR_TEST_UTILS #endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS