#include "CubicIntersection.h" #include "Intersections.h" #include "IntersectionUtilities.h" #include "LineIntersection.h" class CubicIntersections : public Intersections { public: CubicIntersections(const Cubic& c1, const Cubic& c2, Intersections& i) : cubic1(c1) , cubic2(c2) , intersections(i) , depth(0) , splits(0) { } bool intersect() { double minT1, minT2, maxT1, maxT2; if (!bezier_clip(cubic2, cubic1, minT1, maxT1)) { return false; } if (!bezier_clip(cubic1, cubic2, minT2, maxT2)) { return false; } int split; if (maxT1 - minT1 < maxT2 - minT2) { intersections.swap(); minT2 = 0; maxT2 = 1; split = maxT1 - minT1 > tClipLimit; } else { minT1 = 0; maxT1 = 1; split = (maxT2 - minT2 > tClipLimit) << 1; } return chop(minT1, maxT1, minT2, maxT2, split); } protected: bool intersect(double minT1, double maxT1, double minT2, double maxT2) { Cubic smaller, larger; // FIXME: carry last subdivide and reduceOrder result with cubic sub_divide(cubic1, minT1, maxT1, intersections.swapped() ? larger : smaller); sub_divide(cubic2, minT2, maxT2, intersections.swapped() ? smaller : larger); Cubic smallResult; if (reduceOrder(smaller, smallResult, kReduceOrder_NoQuadraticsAllowed) <= 2) { Cubic largeResult; if (reduceOrder(larger, largeResult, kReduceOrder_NoQuadraticsAllowed) <= 2) { _Point pt; const _Line& smallLine = (const _Line&) smallResult; const _Line& largeLine = (const _Line&) largeResult; if (!lineIntersect(smallLine, largeLine, &pt)) { return false; } double smallT = t_at(smallLine, pt); double largeT = t_at(largeLine, pt); if (intersections.swapped()) { smallT = interp(minT2, maxT2, smallT); largeT = interp(minT1, maxT1, largeT); } else { smallT = interp(minT1, maxT1, smallT); largeT = interp(minT2, maxT2, largeT); } intersections.add(smallT, largeT); return true; } } double minT, maxT; if (!bezier_clip(smaller, larger, minT, maxT)) { if (minT == maxT) { if (intersections.swapped()) { minT1 = (minT1 + maxT1) / 2; minT2 = interp(minT2, maxT2, minT); } else { minT1 = interp(minT1, maxT1, minT); minT2 = (minT2 + maxT2) / 2; } intersections.add(minT1, minT2); return true; } return false; } int split; if (intersections.swapped()) { double newMinT1 = interp(minT1, maxT1, minT); double newMaxT1 = interp(minT1, maxT1, maxT); split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT1, newMaxT1, minT1, maxT1, split); minT1 = newMinT1; maxT1 = newMaxT1; } else { double newMinT2 = interp(minT2, maxT2, minT); double newMaxT2 = interp(minT2, maxT2, maxT); split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT2, newMaxT2, minT2, maxT2, split); minT2 = newMinT2; maxT2 = newMaxT2; } return chop(minT1, maxT1, minT2, maxT2, split); } bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { ++depth; intersections.swap(); if (split) { ++splits; if (split & 2) { double middle1 = (maxT1 + minT1) / 2; intersect(minT1, middle1, minT2, maxT2); intersect(middle1, maxT1, minT2, maxT2); } else { double middle2 = (maxT2 + minT2) / 2; intersect(minT1, maxT1, minT2, middle2); intersect(minT1, maxT1, middle2, maxT2); } --splits; intersections.swap(); --depth; return intersections.intersected(); } bool result = intersect(minT1, maxT1, minT2, maxT2); intersections.swap(); --depth; return result; } private: static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections const Cubic& cubic1; const Cubic& cubic2; Intersections& intersections; int depth; int splits; }; bool intersectStartT(const Cubic& c1, const Cubic& c2, Intersections& i) { CubicIntersections c(c1, c2, i); return c.intersect(); }