/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tests/TestUtils.h" #include "include/core/SkColorSpace.h" #include "include/core/SkStream.h" #include "include/encode/SkPngEncoder.h" #include "include/utils/SkBase64.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkUtils.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrDrawingManager.h" #include "src/gpu/ganesh/GrGpu.h" #include "src/gpu/ganesh/GrImageInfo.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/GrSurfaceProxy.h" #include "src/gpu/ganesh/GrTextureProxy.h" #include "src/gpu/ganesh/SkGr.h" #include "src/gpu/ganesh/SurfaceContext.h" void TestReadPixels(skiatest::Reporter* reporter, GrDirectContext* dContext, skgpu::SurfaceContext* srcContext, uint32_t expectedPixelValues[], const char* testName) { int pixelCnt = srcContext->width() * srcContext->height(); SkImageInfo ii = SkImageInfo::Make(srcContext->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkAutoPixmapStorage pm; pm.alloc(ii); pm.erase(SK_ColorTRANSPARENT); bool read = srcContext->readPixels(dContext, pm, {0, 0}); if (!read) { ERRORF(reporter, "%s: Error reading from texture.", testName); } for (int i = 0; i < pixelCnt; ++i) { if (pm.addr32()[i] != expectedPixelValues[i]) { ERRORF(reporter, "%s: Error, pixel value %d should be 0x%08x, got 0x%08x.", testName, i, expectedPixelValues[i], pm.addr32()[i]); break; } } } void TestWritePixels(skiatest::Reporter* reporter, GrDirectContext* dContext, skgpu::SurfaceContext* dstContext, bool expectedToWork, const char* testName) { SkImageInfo ii = SkImageInfo::Make(dstContext->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkAutoPixmapStorage pm; pm.alloc(ii); for (int y = 0; y < dstContext->height(); ++y) { for (int x = 0; x < dstContext->width(); ++x) { *pm.writable_addr32(x, y) = SkColorToPremulGrColor(SkColorSetARGB(2*y, x, y, x + y)); } } bool write = dstContext->writePixels(dContext, pm, {0, 0}); if (!write) { if (expectedToWork) { ERRORF(reporter, "%s: Error writing to texture.", testName); } return; } if (write && !expectedToWork) { ERRORF(reporter, "%s: writePixels succeeded when it wasn't supposed to.", testName); return; } TestReadPixels(reporter, dContext, dstContext, pm.writable_addr32(0, 0), testName); } void TestCopyFromSurface(skiatest::Reporter* reporter, GrDirectContext* dContext, sk_sp proxy, GrSurfaceOrigin origin, GrColorType colorType, uint32_t expectedPixelValues[], const char* testName) { auto copy = GrSurfaceProxy::Copy(dContext, std::move(proxy), origin, GrMipmapped::kNo, SkBackingFit::kExact, SkBudgeted::kYes); SkASSERT(copy && copy->asTextureProxy()); auto swizzle = dContext->priv().caps()->getReadSwizzle(copy->backendFormat(), colorType); GrSurfaceProxyView view(std::move(copy), origin, swizzle); auto dstContext = dContext->priv().makeSC(std::move(view), {colorType, kPremul_SkAlphaType, nullptr}); SkASSERT(dstContext); TestReadPixels(reporter, dContext, dstContext.get(), expectedPixelValues, testName); } bool BipmapToBase64DataURI(const SkBitmap& bitmap, SkString* dst) { SkPixmap pm; if (!bitmap.peekPixels(&pm)) { dst->set("peekPixels failed"); return false; } // We're going to embed this PNG in a data URI, so make it as small as possible SkPngEncoder::Options options; options.fFilterFlags = SkPngEncoder::FilterFlag::kAll; options.fZLibLevel = 9; SkDynamicMemoryWStream wStream; if (!SkPngEncoder::Encode(&wStream, pm, options)) { dst->set("SkPngEncoder::Encode failed"); return false; } sk_sp pngData = wStream.detachAsData(); size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr); // The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs. // Infra says these can be pretty big, as long as we're only outputting them on failure. static const size_t kMaxBase64Length = 1024 * 1024; if (len > kMaxBase64Length) { dst->printf("Encoded image too large (%u bytes)", static_cast(len)); return false; } dst->resize(len); SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str()); dst->prepend("data:image/png;base64,"); return true; } static bool compare_colors(int x, int y, const float rgbaA[], const float rgbaB[], const float tolRGBA[4], std::function& error) { float diffs[4]; bool bad = false; for (int i = 0; i < 4; ++i) { diffs[i] = rgbaB[i] - rgbaA[i]; if (std::abs(diffs[i]) > std::abs(tolRGBA[i])) { bad = true; } } if (bad) { error(x, y, diffs); return false; } return true; } bool ComparePixels(const GrCPixmap& a, const GrCPixmap& b, const float tolRGBA[4], std::function& error) { if (a.dimensions() != b.dimensions()) { static constexpr float kEmptyDiffs[4] = {}; error(-1, -1, kEmptyDiffs); return false; } SkAlphaType floatAlphaType = a.alphaType(); // If one is premul and the other is unpremul we do the comparison in premul space. if ((a.alphaType() == kPremul_SkAlphaType || b.alphaType() == kPremul_SkAlphaType) && (a.alphaType() == kUnpremul_SkAlphaType || b.alphaType() == kUnpremul_SkAlphaType)) { floatAlphaType = kPremul_SkAlphaType; } sk_sp floatCS; if (SkColorSpace::Equals(a.colorSpace(), b.colorSpace())) { floatCS = a.refColorSpace(); } else { floatCS = SkColorSpace::MakeSRGBLinear(); } GrImageInfo floatInfo(GrColorType::kRGBA_F32, floatAlphaType, std::move(floatCS), a.dimensions()); GrPixmap floatA = GrPixmap::Allocate(floatInfo); GrPixmap floatB = GrPixmap::Allocate(floatInfo); SkAssertResult(GrConvertPixels(floatA, a)); SkAssertResult(GrConvertPixels(floatB, b)); SkASSERT(floatA.rowBytes() == floatB.rowBytes()); auto at = [rb = floatA.rowBytes()](const void* base, int x, int y) { return SkTAddOffset(base, y*rb + x*sizeof(float)*4); }; for (int y = 0; y < floatA.height(); ++y) { for (int x = 0; x < floatA.width(); ++x) { const float* rgbaA = at(floatA.addr(), x, y); const float* rgbaB = at(floatB.addr(), x, y); if (!compare_colors(x, y, rgbaA, rgbaB, tolRGBA, error)) { return false; } } } return true; } bool CheckSolidPixels(const SkColor4f& col, const SkPixmap& pixmap, const float tolRGBA[4], std::function& error) { size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32); // First convert 'col' to be compatible with 'pixmap' GrPixmap colorPixmap; { sk_sp srcCS = SkColorSpace::MakeSRGBLinear(); GrImageInfo srcInfo(GrColorType::kRGBA_F32, kUnpremul_SkAlphaType, std::move(srcCS), {1, 1}); GrCPixmap srcPixmap(srcInfo, col.vec(), floatBpp); GrImageInfo dstInfo = srcInfo.makeAlphaType(pixmap.alphaType()).makeColorSpace(pixmap.refColorSpace()); colorPixmap = GrPixmap::Allocate(dstInfo); SkAssertResult(GrConvertPixels(colorPixmap, srcPixmap)); } size_t floatRowBytes = floatBpp * pixmap.width(); std::unique_ptr floatB(new char[floatRowBytes * pixmap.height()]); // Then convert 'pixmap' to RGBA_F32 GrPixmap f32Pixmap = GrPixmap::Allocate(pixmap.info().makeColorType(kRGBA_F32_SkColorType)); SkAssertResult(GrConvertPixels(f32Pixmap, pixmap)); for (int y = 0; y < f32Pixmap.height(); ++y) { for (int x = 0; x < f32Pixmap.width(); ++x) { auto rgbaA = SkTAddOffset(f32Pixmap.addr(), f32Pixmap.rowBytes()*y + floatBpp*x); auto rgbaB = static_cast(colorPixmap.addr()); if (!compare_colors(x, y, rgbaA, rgbaB, tolRGBA, error)) { return false; } } } return true; } void CheckSingleThreadedProxyRefs(skiatest::Reporter* reporter, GrSurfaceProxy* proxy, int32_t expectedProxyRefs, int32_t expectedBackingRefs) { int32_t actualBackingRefs = proxy->testingOnly_getBackingRefCnt(); REPORTER_ASSERT(reporter, proxy->refCntGreaterThan(expectedProxyRefs - 1) && !proxy->refCntGreaterThan(expectedProxyRefs)); REPORTER_ASSERT(reporter, actualBackingRefs == expectedBackingRefs); } std::unique_ptr CreateSurfaceContext(GrRecordingContext* rContext, const GrImageInfo& info, SkBackingFit fit, GrSurfaceOrigin origin, GrRenderable renderable, int sampleCount, GrMipmapped mipmapped, GrProtected isProtected, SkBudgeted budgeted) { GrBackendFormat format = rContext->priv().caps()->getDefaultBackendFormat(info.colorType(), renderable); return rContext->priv().makeSC(info, format, fit, origin, renderable, sampleCount, mipmapped, isProtected, budgeted); } #include "src/utils/SkCharToGlyphCache.h" static SkGlyphID hash_to_glyph(uint32_t value) { return SkToU16(((value >> 16) ^ value) & 0xFFFF); } namespace { class UnicharGen { SkUnichar fU; const int fStep; public: UnicharGen(int step) : fU(0), fStep(step) {} SkUnichar next() { fU += fStep; return fU; } }; } // namespace DEF_TEST(chartoglyph_cache, reporter) { SkCharToGlyphCache cache; const int step = 3; UnicharGen gen(step); for (int i = 0; i < 500; ++i) { SkUnichar c = gen.next(); SkGlyphID glyph = hash_to_glyph(c); int index = cache.findGlyphIndex(c); if (index >= 0) { index = cache.findGlyphIndex(c); } REPORTER_ASSERT(reporter, index < 0); cache.insertCharAndGlyph(~index, c, glyph); UnicharGen gen2(step); for (int j = 0; j <= i; ++j) { c = gen2.next(); glyph = hash_to_glyph(c); index = cache.findGlyphIndex(c); if ((unsigned)index != glyph) { index = cache.findGlyphIndex(c); } REPORTER_ASSERT(reporter, (unsigned)index == glyph); } } }