/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CurveUtilities.h" #include "LineParameters.h" #define DEBUG_BEZIER_CLIP 1 // return false if unable to clip (e.g., unable to create implicit line) // caller should subdivide, or create degenerate if the values are too small bool bezier_clip(const Quadratic& q1, const Quadratic& q2, double& minT, double& maxT) { minT = 1; maxT = 0; // determine normalized implicit line equation for pt[0] to pt[3] // of the form ax + by + c = 0, where a*a + b*b == 1 // find the implicit line equation parameters LineParameters endLine; endLine.quadEndPoints(q1); if (!endLine.normalize()) { printf("line cannot be normalized: need more code here\n"); SkASSERT(0); return false; } double distance = endLine.controlPtDistance(q1); // find fat line double top = 0; double bottom = distance / 2; // http://students.cs.byu.edu/~tom/557/text/cic.pdf (7.6) if (top > bottom) { SkTSwap(top, bottom); } // compute intersecting candidate distance Quadratic distance2y; // points with X of (0, 1/2, 1) endLine.quadDistanceY(q2, distance2y); int flags = 0; if (approximately_lesser(distance2y[0].y, top)) { flags |= kFindTopMin; } else if (approximately_greater(distance2y[0].y, bottom)) { flags |= kFindBottomMin; } else { minT = 0; } if (approximately_lesser(distance2y[2].y, top)) { flags |= kFindTopMax; } else if (approximately_greater(distance2y[2].y, bottom)) { flags |= kFindBottomMax; } else { maxT = 1; } // Find the intersection of distance convex hull and fat line. int idx = 0; do { int next = idx + 1; if (next == 3) { next = 0; } x_at(distance2y[idx], distance2y[next], top, bottom, flags, minT, maxT); idx = next; } while (idx); #if DEBUG_BEZIER_CLIP _Rect r1, r2; r1.setBounds(q1); r2.setBounds(q2); _Point testPt = {0.487, 0.337}; if (r1.contains(testPt) && r2.contains(testPt)) { printf("%s q1=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" " q2=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) minT=%1.9g maxT=%1.9g\n", __FUNCTION__, q1[0].x, q1[0].y, q1[1].x, q1[1].y, q1[2].x, q1[2].y, q2[0].x, q2[0].y, q2[1].x, q2[1].y, q2[2].x, q2[2].y, minT, maxT); } #endif return minT < maxT; // returns false if distance shows no intersection }