/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This test only works with the GPU backend. #include "gm.h" #include "sk_tool_utils.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrMemoryPool.h" #include "GrOpFlushState.h" #include "GrPathUtils.h" #include "GrRecordingContext.h" #include "GrRecordingContextPriv.h" #include "GrRenderTargetContextPriv.h" #include "SkColorPriv.h" #include "SkGeometry.h" #include "SkPoint3.h" #include "SkPointPriv.h" #include "effects/GrBezierEffect.h" #include "ops/GrMeshDrawOp.h" namespace skiagm { class BezierTestOp : public GrMeshDrawOp { public: FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize( const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType) override { return fProcessorSet.finalize( fColor, GrProcessorAnalysisCoverage::kSingleChannel, clip, &GrUserStencilSettings::kUnused, fsaaType, caps, &fColor); } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { fProcessorSet.visitProxies(func); } protected: BezierTestOp(sk_sp gp, const SkRect& rect, const SkPMColor4f& color, int32_t classID) : INHERITED(classID) , fRect(rect) , fColor(color) , fGeometryProcessor(std::move(gp)) , fProcessorSet(SkBlendMode::kSrc) { this->setBounds(rect, HasAABloat::kYes, IsZeroArea::kNo); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { flushState->executeDrawsAndUploadsForMeshDrawOp( this, chainBounds, std::move(fProcessorSet)); } sk_sp gp() const { return fGeometryProcessor; } const SkRect& rect() const { return fRect; } const SkPMColor4f& color() const { return fColor; } private: SkRect fRect; SkPMColor4f fColor; sk_sp fGeometryProcessor; GrProcessorSet fProcessorSet; typedef GrMeshDrawOp INHERITED; }; /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierConicTestOp : public BezierTestOp { public: DEFINE_OP_CLASS_ID const char* name() const override { return "BezierConicTestOp"; } static std::unique_ptr Make(GrRecordingContext* context, sk_sp gp, const SkRect& rect, const SkPMColor4f& color, const SkMatrix& klm) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); return pool->allocate(std::move(gp), rect, color, klm); } private: friend class ::GrOpMemoryPool; // for ctor BezierConicTestOp(sk_sp gp, const SkRect& rect, const SkPMColor4f& color, const SkMatrix& klm) : INHERITED(std::move(gp), rect, color, ClassID()), fKLM(klm) {} struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; void onPrepareDraws(Target* target) override { SkASSERT(this->gp()->vertexStride() == sizeof(Vertex)); QuadHelper helper(target, sizeof(Vertex), 1); Vertex* verts = reinterpret_cast(helper.vertices()); if (!verts) { return; } SkRect rect = this->rect(); SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, sizeof(Vertex)); for (int v = 0; v < 4; ++v) { SkPoint3 pt3 = {verts[v].fPosition.x(), verts[v].fPosition.y(), 1.f}; fKLM.mapHomogeneousPoints((SkPoint3* ) verts[v].fKLM, &pt3, 1); } helper.recordDraw(target, this->gp()); } SkMatrix fKLM; static constexpr int kVertsPerCubic = 4; static constexpr int kIndicesPerCubic = 6; typedef BezierTestOp INHERITED; }; /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierConicEffects : public GpuGM { public: BezierConicEffects() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() override { return SkString("bezier_conic_effects"); } SkISize onISize() override { return SkISize::Make(800, 800); } void onDraw(GrContext* context, GrRenderTargetContext* renderTargetContext, SkCanvas* canvas) override { struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; constexpr int kNumConics = 10; SkRandom rand; // Mult by 3 for each edge effect type int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols); SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols; SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows; int row = 0; int col = 0; SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(0xff000000); for (int i = 0; i < kNumConics; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; SkScalar weight = rand.nextRangeF(0.f, 2.f); for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) { sk_sp gp; GrClipEdgeType et = (GrClipEdgeType)edgeType; gp = GrConicEffect::Make(color, SkMatrix::I(), et, *context->priv().caps(), SkMatrix::I(), false); if (!gp) { continue; } SkScalar x = col * w; SkScalar y = row * h; SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkConic dst[4]; SkMatrix klm; int cnt = chop_conic(controlPts, dst, weight); GrPathUtils::getConicKLM(controlPts, weight, &klm); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = dst[c].fPts; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i], 3.f, choppedPtPaint); } SkRect bounds; //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}}; //bounds.set(bPts, 2); bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); std::unique_ptr op = BezierConicTestOp::Make(context, gp, bounds, color, klm); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: // Uses the max curvature function for quads to estimate // where to chop the conic. If the max curvature is not // found along the curve segment it will return 1 and // dst[0] is the original conic. If it returns 2 the dst[0] // and dst[1] are the two new conics. int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { SkScalar t = SkFindQuadMaxCurvature(src); if (t == 0 || t == 1) { if (dst) { dst[0].set(src, weight); } return 1; } else { if (dst) { SkConic conic; conic.set(src, weight); if (!conic.chopAt(t, dst)) { dst[0].set(src, weight); return 1; } } return 2; } } // Calls split_conic on the entire conic and then once more on each subsection. // Most cases will result in either 1 conic (chop point is not within t range) // or 3 points (split once and then one subsection is split again). int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { SkConic dstTemp[2]; int conicCnt = split_conic(src, dstTemp, weight); if (2 == conicCnt) { int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); } else { dst[0] = dstTemp[0]; } return conicCnt; } typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// class BezierQuadTestOp : public BezierTestOp { public: DEFINE_OP_CLASS_ID const char* name() const override { return "BezierQuadTestOp"; } static std::unique_ptr Make(GrContext* context, sk_sp gp, const SkRect& rect, const SkPMColor4f& color, const GrPathUtils::QuadUVMatrix& devToUV) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); return pool->allocate(std::move(gp), rect, color, devToUV); } private: friend class ::GrOpMemoryPool; // for ctor BezierQuadTestOp(sk_sp gp, const SkRect& rect, const SkPMColor4f& color, const GrPathUtils::QuadUVMatrix& devToUV) : INHERITED(std::move(gp), rect, color, ClassID()), fDevToUV(devToUV) {} struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; void onPrepareDraws(Target* target) override { SkASSERT(this->gp()->vertexStride() == sizeof(Vertex)); QuadHelper helper(target, sizeof(Vertex), 1); Vertex* verts = reinterpret_cast(helper.vertices()); if (!verts) { return; } SkRect rect = this->rect(); SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect, sizeof(Vertex)); fDevToUV.apply(verts, 4, sizeof(Vertex), sizeof(SkPoint)); helper.recordDraw(target, this->gp()); } GrPathUtils::QuadUVMatrix fDevToUV; static constexpr int kVertsPerCubic = 4; static constexpr int kIndicesPerCubic = 6; typedef BezierTestOp INHERITED; }; /** * This GM directly exercises effects that draw Bezier quad curves in the GPU backend. */ class BezierQuadEffects : public GpuGM { public: BezierQuadEffects() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() override { return SkString("bezier_quad_effects"); } SkISize onISize() override { return SkISize::Make(800, 800); } void onDraw(GrContext* context, GrRenderTargetContext* renderTargetContext, SkCanvas* canvas) override { struct Vertex { SkPoint fPosition; float fUV[4]; // The last two values are ignored. The effect expects a vec4f. }; constexpr int kNumQuads = 5; SkRandom rand; int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols); SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols; SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows; int row = 0; int col = 0; SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(0xff000000); for (int i = 0; i < kNumQuads; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) { sk_sp gp; GrClipEdgeType et = (GrClipEdgeType)edgeType; gp = GrQuadEffect::Make(color, SkMatrix::I(), et, *context->priv().caps(), SkMatrix::I(), false); if (!gp) { continue; } SkScalar x = col * w; SkScalar y = row * h; SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkPoint chopped[5]; int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = chopped + 2 * c; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i], 3.f, choppedPtPaint); } SkRect bounds; bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); GrPaint grPaint; grPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc)); GrPathUtils::QuadUVMatrix DevToUV(pts); std::unique_ptr op = BezierQuadTestOp::Make(context, gp, bounds, color, DevToUV); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: typedef GM INHERITED; }; DEF_GM(return new BezierConicEffects;) DEF_GM(return new BezierQuadEffects;) }