/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "bench/ResultsWriter.h" #include "bench/SkSLBench.h" #include "include/core/SkCanvas.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/mock/GrMockCaps.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLIRGenerator.h" #include "src/sksl/SkSLParser.h" class SkSLCompilerStartupBench : public Benchmark { protected: const char* onGetName() override { return "sksl_compiler_startup"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas*) override { GrShaderCaps caps(GrContextOptions{}); for (int i = 0; i < loops; i++) { SkSL::Compiler compiler(&caps); } } }; DEF_BENCH(return new SkSLCompilerStartupBench();) enum class Output { kNone, kGLSL, kMetal, kSPIRV }; class SkSLCompileBench : public Benchmark { public: static const char* output_string(Output output) { switch (output) { case Output::kNone: return ""; case Output::kGLSL: return "glsl_"; case Output::kMetal: return "metal_"; case Output::kSPIRV: return "spirv_"; } SkUNREACHABLE; } SkSLCompileBench(SkSL::String name, const char* src, bool optimize, Output output) : fName(SkSL::String("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + name) , fSrc(src) , fCaps(GrContextOptions(), GrMockOptions()) , fCompiler(fCaps.shaderCaps()) , fOutput(output) { fSettings.fOptimize = optimize; // The test programs we compile don't follow Vulkan rules and thus produce invalid // SPIR-V. This is harmless, so long as we don't try to validate them. fSettings.fValidateSPIRV = false; } protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas* canvas) override { for (int i = 0; i < loops; i++) { std::unique_ptr program = fCompiler.convertProgram( SkSL::Program::kFragment_Kind, fSrc, fSettings); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } SkSL::String result; switch (fOutput) { case Output::kNone: break; case Output::kGLSL: SkAssertResult(fCompiler.toGLSL(*program, &result)); break; case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break; case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break; } } } private: SkSL::String fName; SkSL::String fSrc; GrMockCaps fCaps; SkSL::Compiler fCompiler; SkSL::Program::Settings fSettings; Output fOutput; using INHERITED = Benchmark; }; class SkSLParseBench : public Benchmark { public: SkSLParseBench(SkSL::String name, const char* src) : fName("sksl_parse_" + name) , fSrc(src) , fCaps(GrContextOptions()) , fCompiler(&fCaps) {} protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDelayedSetup() override { SkSL::ParsedModule module = fCompiler.moduleForProgramKind( SkSL::Program::Kind::kFragment_Kind); fCompiler.irGenerator().setSymbolTable(module.fSymbols); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; i++) { fCompiler.irGenerator().pushSymbolTable(); SkSL::Parser parser(fSrc.c_str(), fSrc.length(), *fCompiler.irGenerator().symbolTable(), fCompiler); parser.compilationUnit(); fCompiler.irGenerator().popSymbolTable(); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } } } private: SkSL::String fName; SkSL::String fSrc; GrShaderCaps fCaps; SkSL::Compiler fCompiler; SkSL::Program::Settings fSettings; using INHERITED = Benchmark; }; /////////////////////////////////////////////////////////////////////////////// #define COMPILER_BENCH(name, text) \ static constexpr char name ## _SRC[] = text; \ DEF_BENCH(return new SkSLParseBench(#name, name ## _SRC);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/false, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kGLSL);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kMetal);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSPIRV);) // Metal requires a layout set and binding for all of its uniforms. We just care that these shaders // compile, not that they actually work, so we just fill them with zeroes. COMPILER_BENCH(large, R"( layout(set=0, binding=0) uniform half urange_Stage1; layout(set=0, binding=0) uniform half4 uleftBorderColor_Stage1_c0_c0; layout(set=0, binding=0) uniform half4 urightBorderColor_Stage1_c0_c0; layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0_c0; layout(set=0, binding=0) uniform half2 ufocalParams_Stage1_c0_c0_c0_c0; layout(set=0, binding=0) uniform float4 uscale0_1_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale2_3_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale4_5_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 uscale6_7_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias0_1_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias2_3_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias4_5_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform float4 ubias6_7_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform half4 uthresholds1_7_Stage1_c0_c0_c1; layout(set=0, binding=0) uniform half4 uthresholds9_13_Stage1_c0_c0_c1; flat in half4 vcolor_Stage0; in float vcoverage_Stage0; flat in float4 vgeomSubset_Stage0; in float2 vTransformedCoords_0_Stage0; out half4 sk_FragColor; half4 TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0(half4 _input) { half4 _output; float t = -1.0; half v = 1.0; @switch (2) { case 1: { half r0_2 = ufocalParams_Stage1_c0_c0_c0_c0.y; t = float(r0_2) - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; if (t >= 0.0) { t = vTransformedCoords_0_Stage0.x + sqrt(t); } else { v = -1.0; } } break; case 0: { half r0 = ufocalParams_Stage1_c0_c0_c0_c0.x; @if (true) { t = length(vTransformedCoords_0_Stage0) - float(r0); } else { t = -length(vTransformedCoords_0_Stage0) - float(r0); } } break; case 2: { half invR1 = ufocalParams_Stage1_c0_c0_c0_c0.x; half fx = ufocalParams_Stage1_c0_c0_c0_c0.y; float x_t = -1.0; @if (false) { x_t = dot(vTransformedCoords_0_Stage0, vTransformedCoords_0_Stage0) / vTransformedCoords_0_Stage0.x; } else if (true) { x_t = length(vTransformedCoords_0_Stage0) - vTransformedCoords_0_Stage0.x * float(invR1); } else { float temp = vTransformedCoords_0_Stage0.x * vTransformedCoords_0_Stage0.x - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; if (temp >= 0.0) { @if (false || !true) { x_t = -sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); } else { x_t = sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); } } } @if (!true) { if (x_t <= 0.0) { v = -1.0; } } @if (true) { @if (false) { t = x_t; } else { t = x_t + float(fx); } } else { @if (false) { t = -x_t; } else { t = -x_t + float(fx); } } @if (false) { t = 1.0 - t; } } break; } _output = half4(half(t), v, 0.0, 0.0); return _output; } half4 MatrixEffect_Stage1_c0_c0_c0(half4 _input) { half4 _output; _output = TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0(_input); return _output; } half4 UnrolledBinaryGradientColorizer_Stage1_c0_c0_c1(half4 _input, float2 _coords) { half4 _output; half t = half(_coords.x); float4 scale, bias; if (4 <= 4 || t < uthresholds1_7_Stage1_c0_c0_c1.w) { if (4 <= 2 || t < uthresholds1_7_Stage1_c0_c0_c1.y) { if (4 <= 1 || t < uthresholds1_7_Stage1_c0_c0_c1.x) { scale = uscale0_1_Stage1_c0_c0_c1; bias = ubias0_1_Stage1_c0_c0_c1; } else { scale = uscale2_3_Stage1_c0_c0_c1; bias = ubias2_3_Stage1_c0_c0_c1; } } else { if (4 <= 3 || t < uthresholds1_7_Stage1_c0_c0_c1.z) { scale = uscale4_5_Stage1_c0_c0_c1; bias = ubias4_5_Stage1_c0_c0_c1; } else { scale = uscale6_7_Stage1_c0_c0_c1; bias = ubias6_7_Stage1_c0_c0_c1; } } } else { if (4 <= 6 || t < uthresholds9_13_Stage1_c0_c0_c1.y) { if (4 <= 5 || t < uthresholds9_13_Stage1_c0_c0_c1.x) { scale = float4(0); bias = float4(0); } else { scale = float4(0); bias = float4(0); } } else { if (4 <= 7 || t < uthresholds9_13_Stage1_c0_c0_c1.z) { scale = float4(0); bias = float4(0); } else { scale = float4(0); bias = float4(0); } } } _output = half4(float(t) * scale + bias); return _output; } half4 ClampedGradientEffect_Stage1_c0_c0(half4 _input) { half4 _output; half4 t = MatrixEffect_Stage1_c0_c0_c0(_input); if (!false && t.y < 0.0) { _output = half4(0.0); } else if (t.x < 0.0) { _output = uleftBorderColor_Stage1_c0_c0; } else if (t.x > 1.0) { _output = urightBorderColor_Stage1_c0_c0; } else { _output = UnrolledBinaryGradientColorizer_Stage1_c0_c0_c1(_input, float2(half2(t.x, 0.0))); } @if (false) { _output.xyz *= _output.w; } return _output; } half4 OverrideInputFragmentProcessor_Stage1_c0(half4 _input) { half4 _output; half4 constColor; @if (false) { constColor = half4(0); } else { constColor = half4(1.000000, 1.000000, 1.000000, 1.000000); } _output = ClampedGradientEffect_Stage1_c0_c0(constColor); return _output; } void main() { half4 outputColor_Stage0; half4 outputCoverage_Stage0; { // Stage 0, QuadPerEdgeAAGeometryProcessor outputColor_Stage0 = vcolor_Stage0; float coverage = vcoverage_Stage0 * sk_FragCoord.w; float4 geoSubset; geoSubset = vgeomSubset_Stage0; if (coverage < 0.5) { float4 dists4 = clamp(float4(1, 1, -1, -1) * (sk_FragCoord.xyxy - geoSubset), 0, 1); float2 dists2 = dists4.xy * dists4.zw; coverage = min(coverage, dists2.x * dists2.y); } outputCoverage_Stage0 = half4(half(coverage)); } half4 output_Stage1; { // Stage 1, DitherEffect half4 color = OverrideInputFragmentProcessor_Stage1_c0(outputColor_Stage0); half value; @if (sk_Caps.integerSupport) { uint x = uint(sk_FragCoord.x); uint y = uint(sk_FragCoord.y) ^ x; uint m = (((((y & 1) << 5 | (x & 1) << 4) | (y & 2) << 2) | (x & 2) << 1) | (y & 4) >> 1) | (x & 4) >> 2; value = half(m) / 64.0 - 0.4921875; } else { half4 bits = mod(half4(sk_FragCoord.yxyx), half4(2.0, 2.0, 4.0, 4.0)); bits.zw = step(2.0, bits.zw); bits.xz = abs(bits.xz - bits.yw); value = dot(bits, half4(0.5, 0.25, 0.125, 0.0625)) - 0.46875; } output_Stage1 = half4(clamp(color.xyz + value * urange_Stage1, 0.0, color.w), color.w); } { // Xfer Processor: Porter Duff sk_FragColor = output_Stage1 * outputCoverage_Stage0; } } )"); COMPILER_BENCH(medium, R"( layout(set=0, binding=0) uniform half2 uDstTextureUpperLeft_Stage1; layout(set=0, binding=0) uniform half2 uDstTextureCoordScale_Stage1; layout(set=0, binding=0) uniform sampler2D uDstTextureSampler_Stage1; noperspective in half4 vQuadEdge_Stage0; noperspective in half4 vinColor_Stage0; out half4 sk_FragColor; half luminance_Stage1(half3 color) { return dot(half3(0.3, 0.59, 0.11), color); } half3 set_luminance_Stage1(half3 hueSat, half alpha, half3 lumColor) { half diff = luminance_Stage1(lumColor - hueSat); half3 outColor = hueSat + diff; half outLum = luminance_Stage1(outColor); half minComp = min(min(outColor.r, outColor.g), outColor.b); half maxComp = max(max(outColor.r, outColor.g), outColor.b); if (minComp < 0.0 && outLum != minComp) { outColor = outLum + ((outColor - half3(outLum, outLum, outLum)) * outLum) / (outLum - minComp); } if (maxComp > alpha && maxComp != outLum) { outColor = outLum +((outColor - half3(outLum, outLum, outLum)) * (alpha - outLum)) / (maxComp - outLum); } return outColor; } void main() { half4 outputColor_Stage0; half4 outputCoverage_Stage0; { // Stage 0, QuadEdge outputColor_Stage0 = vinColor_Stage0; half edgeAlpha; half2 duvdx = half2(dFdx(vQuadEdge_Stage0.xy)); half2 duvdy = half2(dFdy(vQuadEdge_Stage0.xy)); if (vQuadEdge_Stage0.z > 0.0 && vQuadEdge_Stage0.w > 0.0) { edgeAlpha = min(min(vQuadEdge_Stage0.z, vQuadEdge_Stage0.w) + 0.5, 1.0); } else { half2 gF = half2(2.0 * vQuadEdge_Stage0.x * duvdx.x - duvdx.y, 2.0 * vQuadEdge_Stage0.x * duvdy.x - duvdy.y); edgeAlpha = (vQuadEdge_Stage0.x*vQuadEdge_Stage0.x - vQuadEdge_Stage0.y); edgeAlpha = saturate(0.5 - edgeAlpha / length(gF)); } outputCoverage_Stage0 = half4(edgeAlpha); } { // Xfer Processor: Custom Xfermode if (all(lessThanEqual(outputCoverage_Stage0.rgb, half3(0)))) { discard; } // Read color from copy of the destination. half2 _dstTexCoord = (half2(sk_FragCoord.xy) - uDstTextureUpperLeft_Stage1) * uDstTextureCoordScale_Stage1; _dstTexCoord.y = 1.0 - _dstTexCoord.y; half4 _dstColor = sample(uDstTextureSampler_Stage1, _dstTexCoord); sk_FragColor.a = outputColor_Stage0.a + (1.0 - outputColor_Stage0.a) * _dstColor.a; half4 srcDstAlpha = outputColor_Stage0 * _dstColor.a; sk_FragColor.rgb = set_luminance_Stage1(_dstColor.rgb * outputColor_Stage0.a, srcDstAlpha.a, srcDstAlpha.rgb); sk_FragColor.rgb += (1.0 - outputColor_Stage0.a) * _dstColor.rgb + (1.0 - _dstColor.a) * outputColor_Stage0.rgb; sk_FragColor = outputCoverage_Stage0 * sk_FragColor + (half4(1.0) - outputCoverage_Stage0) * _dstColor; } } )"); COMPILER_BENCH(small, R"( layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0; layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage1; noperspective in float2 vTransformedCoords_0_Stage0; out half4 sk_FragColor; half4 TextureEffect_Stage1_c0_c0_c0(half4 _input) { half4 _output; return sample(uTextureSampler_0_Stage1, vTransformedCoords_0_Stage0); } half4 MatrixEffect_Stage1_c0_c0(half4 _input) { half4 _output; return TextureEffect_Stage1_c0_c0_c0(_input); } inline half4 Blend_Stage1_c0(half4 _input) { half4 _output; // Blend mode: Modulate (Compose-One behavior) return blend_modulate(MatrixEffect_Stage1_c0_c0(half4(1)), _input); } void main() { half4 outputColor_Stage0; half4 outputCoverage_Stage0; { // Stage 0, QuadPerEdgeAAGeometryProcessor outputColor_Stage0 = half4(1); outputCoverage_Stage0 = half4(1); } half4 output_Stage1; output_Stage1 = Blend_Stage1_c0(outputColor_Stage0); { // Xfer Processor: Porter Duff sk_FragColor = output_Stage1 * outputCoverage_Stage0; } } )"); COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); #if defined(SK_BUILD_FOR_UNIX) #include // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and // directly add their results to the nanobench log. void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) { auto heap_bytes_used = []() { return mallinfo().uordblks; }; auto bench = [log](const char* name, int bytes) { log->beginObject(name); // test log->beginObject("meta"); // config log->appendS32("bytes", bytes); // sub_result log->endObject(); // config log->endObject(); // test }; // Heap used by a default compiler (with no modules loaded) { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); int after = heap_bytes_used(); bench("sksl_compiler_baseline", after - before); } // Heap used by a compiler with the two main GPU modules (fragment + vertex) loaded { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::Program::kVertex_Kind); compiler.moduleForProgramKind(SkSL::Program::kFragment_Kind); int after = heap_bytes_used(); bench("sksl_compiler_gpu", after - before); } // Heap used by a compiler with the runtime effect module loaded { int before = heap_bytes_used(); GrShaderCaps caps(GrContextOptions{}); SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::Program::kRuntimeEffect_Kind); int after = heap_bytes_used(); bench("sksl_compiler_runtimeeffect", after - before); } } #else void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {} #endif