/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "BenchTimer.h" #include "GrContext.h" #include "GrRenderTarget.h" #include "SkBenchmark.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkGpuDevice.h" #include "SkGraphics.h" #include "SkImageEncoder.h" #include "SkNativeGLContext.h" #include "SkNullGLContext.h" #include "SkNWayCanvas.h" #include "SkPicture.h" #include "SkString.h" #ifdef SK_BUILD_FOR_ANDROID static void log_error(const char msg[]) { SkDebugf("%s", msg); } static void log_progress(const char msg[]) { SkDebugf("%s", msg); } #else static void log_error(const char msg[]) { fprintf(stderr, "%s", msg); } static void log_progress(const char msg[]) { printf("%s", msg); } #endif static void log_error(const SkString& str) { log_error(str.c_str()); } static void log_progress(const SkString& str) { log_progress(str.c_str()); } /////////////////////////////////////////////////////////////////////////////// static void erase(SkBitmap& bm) { if (bm.config() == SkBitmap::kA8_Config) { bm.eraseColor(0); } else { bm.eraseColor(SK_ColorWHITE); } } #if 0 static bool equal(const SkBitmap& bm1, const SkBitmap& bm2) { if (bm1.width() != bm2.width() || bm1.height() != bm2.height() || bm1.config() != bm2.config()) { return false; } size_t pixelBytes = bm1.width() * bm1.bytesPerPixel(); for (int y = 0; y < bm1.height(); y++) { if (memcmp(bm1.getAddr(0, y), bm2.getAddr(0, y), pixelBytes)) { return false; } } return true; } #endif class Iter { public: Iter(void* param) { fBench = BenchRegistry::Head(); fParam = param; } SkBenchmark* next() { if (fBench) { BenchRegistry::Factory f = fBench->factory(); fBench = fBench->next(); return f(fParam); } return NULL; } private: const BenchRegistry* fBench; void* fParam; }; static void make_filename(const char name[], SkString* path) { path->set(name); for (int i = 0; name[i]; i++) { switch (name[i]) { case '/': case '\\': case ' ': case ':': path->writable_str()[i] = '-'; break; default: break; } } } static void saveFile(const char name[], const char config[], const char dir[], const SkBitmap& bm) { SkBitmap copy; if (!bm.copyTo(©, SkBitmap::kARGB_8888_Config)) { return; } if (bm.config() == SkBitmap::kA8_Config) { // turn alpha into gray-scale size_t size = copy.getSize() >> 2; SkPMColor* p = copy.getAddr32(0, 0); for (size_t i = 0; i < size; i++) { int c = (*p >> SK_A32_SHIFT) & 0xFF; c = 255 - c; c |= (c << 24) | (c << 16) | (c << 8); *p++ = c | (SK_A32_MASK << SK_A32_SHIFT); } } SkString str; make_filename(name, &str); str.appendf("_%s.png", config); str.prepend(dir); ::remove(str.c_str()); SkImageEncoder::EncodeFile(str.c_str(), copy, SkImageEncoder::kPNG_Type, 100); } static void performClip(SkCanvas* canvas, int w, int h) { SkRect r; r.set(SkIntToScalar(10), SkIntToScalar(10), SkIntToScalar(w*2/3), SkIntToScalar(h*2/3)); canvas->clipRect(r, SkRegion::kIntersect_Op); r.set(SkIntToScalar(w/3), SkIntToScalar(h/3), SkIntToScalar(w-10), SkIntToScalar(h-10)); canvas->clipRect(r, SkRegion::kXOR_Op); } static void performRotate(SkCanvas* canvas, int w, int h) { const SkScalar x = SkIntToScalar(w) / 2; const SkScalar y = SkIntToScalar(h) / 2; canvas->translate(x, y); canvas->rotate(SkIntToScalar(35)); canvas->translate(-x, -y); } static void performScale(SkCanvas* canvas, int w, int h) { const SkScalar x = SkIntToScalar(w) / 2; const SkScalar y = SkIntToScalar(h) / 2; canvas->translate(x, y); // just enough so we can't take the sprite case canvas->scale(SK_Scalar1 * 99/100, SK_Scalar1 * 99/100); canvas->translate(-x, -y); } static bool parse_bool_arg(char * const* argv, char* const* stop, bool* var) { if (argv < stop) { *var = atoi(*argv) != 0; return true; } return false; } enum Backend { kRaster_Backend, kGPU_Backend, kPDF_Backend, }; class GLHelper { public: GLHelper() { } bool init(SkGLContext* glCtx, int width, int height) { GrContext* grCtx; GrRenderTarget* rt; if (glCtx->init(width, height)) { GrPlatform3DContext ctx = reinterpret_cast(glCtx->gl()); grCtx = GrContext::Create(kOpenGL_Shaders_GrEngine, ctx); if (NULL != grCtx) { GrPlatformRenderTargetDesc desc; desc.fConfig = kSkia8888_PM_GrPixelConfig; desc.fWidth = width; desc.fHeight = height; desc.fStencilBits = 8; desc.fRenderTargetHandle = glCtx->getFBOID(); rt = grCtx->createPlatformRenderTarget(desc); if (NULL == rt) { grCtx->unref(); return false; } } } else { return false; } glCtx->ref(); fGLContext.reset(glCtx); fGrContext.reset(grCtx); fRenderTarget.reset(rt); return true; } bool isValid() { return NULL != fGLContext.get(); } SkGLContext* glContext() { return fGLContext.get(); } GrRenderTarget* renderTarget() { return fRenderTarget.get(); } GrContext* grContext() { return fGrContext.get(); } private: SkAutoTUnref fGLContext; SkAutoTUnref fGrContext; SkAutoTUnref fRenderTarget; }; static GLHelper gRealGLHelper; static GLHelper gNullGLHelper; static SkDevice* make_device(SkBitmap::Config config, const SkIPoint& size, Backend backend, GLHelper* glHelper) { SkDevice* device = NULL; SkBitmap bitmap; bitmap.setConfig(config, size.fX, size.fY); switch (backend) { case kRaster_Backend: bitmap.allocPixels(); erase(bitmap); device = new SkDevice(bitmap); break; case kGPU_Backend: device = new SkGpuDevice(glHelper->grContext(), glHelper->renderTarget()); break; case kPDF_Backend: default: SkASSERT(!"unsupported"); } return device; } static const struct { SkBitmap::Config fConfig; const char* fName; Backend fBackend; GLHelper* fGLHelper; } gConfigs[] = { { SkBitmap::kARGB_8888_Config, "8888", kRaster_Backend, NULL }, { SkBitmap::kRGB_565_Config, "565", kRaster_Backend, NULL }, { SkBitmap::kARGB_8888_Config, "GPU", kGPU_Backend, &gRealGLHelper }, { SkBitmap::kARGB_8888_Config, "NULLGPU", kGPU_Backend, &gNullGLHelper }, }; static int findConfig(const char config[]) { for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); i++) { if (!strcmp(config, gConfigs[i].fName)) { return i; } } return -1; } static void determine_gpu_context_size(SkTDict& defineDict, int* contextWidth, int* contextHeight) { Iter iter(&defineDict); SkBenchmark* bench; while ((bench = iter.next()) != NULL) { SkIPoint dim = bench->getSize(); if (*contextWidth < dim.fX) { *contextWidth = dim.fX; } if (*contextHeight < dim.fY) { *contextHeight = dim.fY; } } } static bool skip_name(const SkTDArray array, const char name[]) { if (0 == array.count()) { // no names, so don't skip anything return false; } for (int i = 0; i < array.count(); ++i) { if (strstr(name, array[i])) { // found the name, so don't skip return false; } } return true; } int main (int argc, char * const argv[]) { SkAutoGraphics ag; SkTDict defineDict(1024); int repeatDraw = 1; int forceAlpha = 0xFF; bool forceAA = true; bool forceFilter = false; SkTriState::State forceDither = SkTriState::kDefault; bool timerWall = false; bool timerCpu = true; bool timerGpu = true; bool doScale = false; bool doRotate = false; bool doClip = false; bool hasStrokeWidth = false; float strokeWidth; SkTDArray fMatches; SkString outDir; SkBitmap::Config outConfig = SkBitmap::kNo_Config; GLHelper* glHelper = NULL; const char* configName = ""; Backend backend = kRaster_Backend; // for warning int configCount = SK_ARRAY_COUNT(gConfigs); char* const* stop = argv + argc; for (++argv; argv < stop; ++argv) { if (strcmp(*argv, "-o") == 0) { argv++; if (argv < stop && **argv) { outDir.set(*argv); if (outDir.c_str()[outDir.size() - 1] != '/') { outDir.append("/"); } } } else if (strcmp(*argv, "-repeat") == 0) { argv++; if (argv < stop) { repeatDraw = atoi(*argv); if (repeatDraw < 1) { repeatDraw = 1; } } else { log_error("missing arg for -repeat\n"); return -1; } } else if (strcmp(*argv, "-timers") == 0) { argv++; if (argv < stop) { timerWall = false; timerCpu = false; timerGpu = false; for (char* t = *argv; *t; ++t) { switch (*t) { case 'w': timerWall = true; break; case 'c': timerCpu = true; break; case 'g': timerGpu = true; break; } } } else { log_error("missing arg for -timers\n"); return -1; } } else if (!strcmp(*argv, "-rotate")) { doRotate = true; } else if (!strcmp(*argv, "-scale")) { doScale = true; } else if (!strcmp(*argv, "-clip")) { doClip = true; } else if (strcmp(*argv, "-forceAA") == 0) { if (!parse_bool_arg(++argv, stop, &forceAA)) { log_error("missing arg for -forceAA\n"); return -1; } } else if (strcmp(*argv, "-forceFilter") == 0) { if (!parse_bool_arg(++argv, stop, &forceFilter)) { log_error("missing arg for -forceFilter\n"); return -1; } } else if (strcmp(*argv, "-forceDither") == 0) { bool tmp; if (!parse_bool_arg(++argv, stop, &tmp)) { log_error("missing arg for -forceDither\n"); return -1; } forceDither = tmp ? SkTriState::kTrue : SkTriState::kFalse; } else if (strcmp(*argv, "-forceBlend") == 0) { bool wantAlpha = false; if (!parse_bool_arg(++argv, stop, &wantAlpha)) { log_error("missing arg for -forceBlend\n"); return -1; } forceAlpha = wantAlpha ? 0x80 : 0xFF; } else if (strcmp(*argv, "-strokeWidth") == 0) { argv++; if (argv < stop) { const char *strokeWidthStr = *argv; if (sscanf(strokeWidthStr, "%f", &strokeWidth) != 1) { log_error("bad arg for -strokeWidth\n"); return -1; } hasStrokeWidth = true; } else { log_error("missing arg for -strokeWidth\n"); return -1; } } else if (strcmp(*argv, "-match") == 0) { argv++; if (argv < stop) { *fMatches.append() = *argv; } else { log_error("missing arg for -match\n"); return -1; } } else if (strcmp(*argv, "-config") == 0) { argv++; if (argv < stop) { int index = findConfig(*argv); if (index >= 0) { outConfig = gConfigs[index].fConfig; configName = gConfigs[index].fName; backend = gConfigs[index].fBackend; glHelper = gConfigs[index].fGLHelper; configCount = 1; } else { SkString str; str.printf("unrecognized config %s\n", *argv); log_error(str); return -1; } } else { log_error("missing arg for -config\n"); return -1; } } else if (strlen(*argv) > 2 && strncmp(*argv, "-D", 2) == 0) { argv++; if (argv < stop) { defineDict.set(argv[-1] + 2, *argv); } else { log_error("incomplete '-Dfoo bar' definition\n"); return -1; } } else { SkString str; str.printf("unrecognized arg %s\n", *argv); log_error(str); return -1; } } // report our current settings { SkString str; str.printf("skia bench: alpha=0x%02X antialias=%d filter=%d", forceAlpha, forceAA, forceFilter); str.appendf(" rotate=%d scale=%d clip=%d", doRotate, doScale, doClip); const char * ditherName; switch (forceDither) { case SkTriState::kDefault: ditherName = "default"; break; case SkTriState::kTrue: ditherName = "true"; break; case SkTriState::kFalse: ditherName = "false"; break; default: ditherName = ""; break; } str.appendf(" dither=%s", ditherName); if (hasStrokeWidth) { str.appendf(" strokeWidth=%f", strokeWidth); } else { str.append(" strokeWidth=none"); } #if defined(SK_SCALAR_IS_FLOAT) str.append(" scalar=float"); #elif defined(SK_SCALAR_IS_FIXED) str.append(" scalar=fixed"); #endif #if defined(SK_BUILD_FOR_WIN32) str.append(" system=WIN32"); #elif defined(SK_BUILD_FOR_MAC) str.append(" system=MAC"); #elif defined(SK_BUILD_FOR_ANDROID) str.append(" system=ANDROID"); #elif defined(SK_BUILD_FOR_UNIX) str.append(" system=UNIX"); #else str.append(" system=other"); #endif #if defined(SK_DEBUG) str.append(" DEBUG"); #endif str.append("\n"); log_progress(str); } //Don't do GL when fixed. #if !defined(SK_SCALAR_IS_FIXED) int contextWidth = 1024; int contextHeight = 1024; determine_gpu_context_size(defineDict, &contextWidth, &contextHeight); SkAutoTUnref realGLCtx(new SkNativeGLContext); SkAutoTUnref nullGLCtx(new SkNullGLContext); gRealGLHelper.init(realGLCtx.get(), contextWidth, contextHeight); gNullGLHelper.init(nullGLCtx.get(), contextWidth, contextHeight); #endif BenchTimer timer = BenchTimer(gRealGLHelper.glContext()); Iter iter(&defineDict); SkBenchmark* bench; while ((bench = iter.next()) != NULL) { SkIPoint dim = bench->getSize(); if (dim.fX <= 0 || dim.fY <= 0) { continue; } bench->setForceAlpha(forceAlpha); bench->setForceAA(forceAA); bench->setForceFilter(forceFilter); bench->setDither(forceDither); if (hasStrokeWidth) { bench->setStrokeWidth(strokeWidth); } // only run benchmarks if their name contains matchStr if (skip_name(fMatches, bench->getName())) { continue; } { SkString str; str.printf("running bench [%d %d] %28s", dim.fX, dim.fY, bench->getName()); log_progress(str); } for (int configIndex = 0; configIndex < configCount; configIndex++) { if (configCount > 1) { outConfig = gConfigs[configIndex].fConfig; configName = gConfigs[configIndex].fName; backend = gConfigs[configIndex].fBackend; glHelper = gConfigs[configIndex].fGLHelper; } if (kGPU_Backend == backend && (NULL == glHelper || !glHelper->isValid())) { continue; } SkDevice* device = make_device(outConfig, dim, backend, glHelper); SkCanvas canvas(device); device->unref(); if (doClip) { performClip(&canvas, dim.fX, dim.fY); } if (doScale) { performScale(&canvas, dim.fX, dim.fY); } if (doRotate) { performRotate(&canvas, dim.fX, dim.fY); } //warm up caches if needed if (repeatDraw > 1) { SkAutoCanvasRestore acr(&canvas, true); bench->draw(&canvas); if (glHelper) { glHelper->grContext()->flush(); SK_GL(*glHelper->glContext(), Finish()); } } timer.start(); for (int i = 0; i < repeatDraw; i++) { SkAutoCanvasRestore acr(&canvas, true); bench->draw(&canvas); if (glHelper) { glHelper->grContext()->flush(); } } if (glHelper) { SK_GL(*glHelper->glContext(), Finish()); } timer.end(); if (repeatDraw > 1) { SkString str; str.printf(" %4s:", configName); if (timerWall) { str.appendf(" msecs = %6.2f", timer.fWall / repeatDraw); } if (timerCpu) { str.appendf(" cmsecs = %6.2f", timer.fCpu / repeatDraw); } if (timerGpu && glHelper && timer.fGpu > 0) { str.appendf(" gmsecs = %6.2f", timer.fGpu / repeatDraw); } log_progress(str); } if (outDir.size() > 0) { saveFile(bench->getName(), configName, outDir.c_str(), device->accessBitmap(false)); } } log_progress("\n"); } return 0; }