/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tests/Test.h" #include "src/gpu/ganesh/geometry/GrQuadBuffer.h" #include #define ASSERT(cond) REPORTER_ASSERT(r, cond) #define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__) #define TEST(name) DEF_TEST(GrQuadBuffer##name, r) struct TestData { int fItem1; float fItem2; }; static void assert_quad_eq(skiatest::Reporter* r, const GrQuad& expected, const GrQuad& actual) { ASSERTF(expected.quadType() == actual.quadType(), "Expected type %d, got %d", (int) expected.quadType(), (int) actual.quadType()); for (int i = 0; i < 4; ++i) { ASSERTF(expected.x(i) == actual.x(i), "Expected x(%d) = %f, got %f", i, expected.x(i), actual.x(i)); ASSERTF(expected.y(i) == actual.y(i), "Expected y(%d) = %f, got %f", i, expected.y(i), actual.y(i)); ASSERTF(expected.w(i) == actual.w(i), "Expected w(%d) = %f, got %f", i, expected.w(i), actual.w(i)); } } static void assert_metadata_eq(skiatest::Reporter* r, const TestData& expected, const TestData& actual) { ASSERTF(expected.fItem1 == actual.fItem1 && expected.fItem2 == actual.fItem2, "Expected { %d, %f } for metadata, got: { %d %f }", expected.fItem1, expected.fItem2, actual.fItem1, actual.fItem2); } static std::vector generate_quads(float seed, int cnt, const GrQuad::Type types[]) { // For convenience use matrix to derive each quad type, rely on different seed values to // differentiate between quads of the same type SkMatrix rotate; rotate.setRotate(45.f); SkMatrix skew; skew.setSkew(0.5f, 0.5f); SkMatrix perspective; perspective.setPerspX(0.01f); perspective.setPerspY(0.001f); std::vector quads; SkRect rect = SkRect::MakeXYWH(seed, 2.f * seed, 2.f * seed, seed); for (int i = 0; i < cnt; ++i) { GrQuad quad; switch(types[i]) { case GrQuad::Type::kAxisAligned: quad = GrQuad(rect); break; case GrQuad::Type::kRectilinear: quad = GrQuad::MakeFromRect(rect, rotate); break; case GrQuad::Type::kGeneral: quad = GrQuad::MakeFromRect(rect, skew); break; default: SkASSERT(types[i] == GrQuad::Type::kPerspective); quad = GrQuad::MakeFromRect(rect, perspective); break; } SkASSERT(quad.quadType() == types[i]); quads.push_back(quad); } return quads; } TEST(Append) { // Generate test data, which includes all quad types out of enum-order and duplicates static const int kQuadCount = 6; static const GrQuad::Type kDeviceTypes[] = { GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear, GrQuad::Type::kGeneral, GrQuad::Type::kPerspective, GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned }; // Odd indexed quads will be ignored and not stored in the buffer static const GrQuad::Type kLocalTypes[] = { GrQuad::Type::kGeneral, GrQuad::Type::kGeneral, GrQuad::Type::kRectilinear, GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned, GrQuad::Type::kAxisAligned }; static_assert(SK_ARRAY_COUNT(kDeviceTypes) == kQuadCount, "device quad count"); static_assert(SK_ARRAY_COUNT(kLocalTypes) == kQuadCount, "local quad count"); std::vector expectedDeviceQuads = generate_quads(1.f, kQuadCount, kDeviceTypes); std::vector expectedLocalQuads = generate_quads(2.f, kQuadCount, kLocalTypes); // Fill in the buffer with the device quads, and a local quad if the index is even GrQuadBuffer buffer; for (int i = 0; i < kQuadCount; ++i) { buffer.append(expectedDeviceQuads[i], // device quad { 2 * i, 3.f * i }, // metadata i % 2 == 0 ? &expectedLocalQuads[i] : nullptr); // optional local quad } // Confirm the state of the buffer ASSERT(kQuadCount == buffer.count()); ASSERT(GrQuad::Type::kPerspective == buffer.deviceQuadType()); ASSERT(GrQuad::Type::kGeneral == buffer.localQuadType()); int i = 0; auto iter = buffer.iterator(); while(iter.next()) { // Each entry always has the device quad assert_quad_eq(r, expectedDeviceQuads[i], *iter.deviceQuad()); assert_metadata_eq(r, {2 * i, 3.f * i}, iter.metadata()); if (i % 2 == 0) { // Confirm local quads included on even entries ASSERT(iter.isLocalValid()); assert_quad_eq(r, expectedLocalQuads[i], *iter.localQuad()); } else { // Should not have locals ASSERT(!iter.isLocalValid()); ASSERT(!iter.localQuad()); } i++; } ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); } TEST(Concat) { static const int kQuadCount = 2; static const GrQuad::Type kTypesA[] = { GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear }; static const GrQuad::Type kTypesB[] = { GrQuad::Type::kGeneral, GrQuad::Type::kPerspective }; static_assert(SK_ARRAY_COUNT(kTypesA) == kQuadCount, "quadsA count"); static_assert(SK_ARRAY_COUNT(kTypesB) == kQuadCount, "quadsB count"); std::vector quadsA = generate_quads(1.f, kQuadCount, kTypesA); std::vector quadsB = generate_quads(2.f, kQuadCount, kTypesB); // Make two buffers, the first uses 'quadsA' for device quads and 'quadsB' for local quads // on even indices. The second uses 'quadsB' for device quads and 'quadsA' for local quads // on odd indices. GrQuadBuffer buffer1; GrQuadBuffer buffer2; for (int i = 0; i < kQuadCount; ++i) { buffer1.append(quadsA[i], {i, 2.f * i}, i % 2 == 0 ? &quadsB[i] : nullptr); buffer2.append(quadsB[i], {2 * i, 0.5f * i}, i % 2 == 0 ? nullptr : &quadsA[i]); } ASSERT(kQuadCount == buffer1.count()); ASSERT(kQuadCount == buffer2.count()); // Perform the concatenation and then confirm the new state of buffer1 buffer1.concat(buffer2); ASSERT(2 * kQuadCount == buffer1.count()); int i = 0; auto iter = buffer1.iterator(); while(iter.next()) { if (i < kQuadCount) { // First half should match original buffer1 assert_quad_eq(r, quadsA[i], *iter.deviceQuad()); assert_metadata_eq(r, {i, 2.f * i}, iter.metadata()); if (i % 2 == 0) { ASSERT(iter.isLocalValid()); assert_quad_eq(r, quadsB[i], *iter.localQuad()); } else { ASSERT(!iter.isLocalValid()); ASSERT(!iter.localQuad()); } } else { // Second half should match buffer2 int j = i - kQuadCount; assert_quad_eq(r, quadsB[j], *iter.deviceQuad()); assert_metadata_eq(r, {2 * j, 0.5f * j}, iter.metadata()); if (j % 2 == 0) { ASSERT(!iter.isLocalValid()); ASSERT(!iter.localQuad()); } else { ASSERT(iter.isLocalValid()); assert_quad_eq(r, quadsA[j], *iter.localQuad()); } } i++; } ASSERTF(i == 2 * kQuadCount, "Expected %d iterations, got: %d",2 * kQuadCount, i); } TEST(Metadata) { static const int kQuadCount = 3; // This test doesn't really care about the quad coordinates (except that they aren't modified // when mutating the metadata) GrQuad quad(SkRect::MakeLTRB(1.f, 2.f, 3.f, 4.f)); GrQuadBuffer buffer; for (int i = 0; i < kQuadCount; ++i) { buffer.append(quad, {i, 2.f * i}, i % 2 == 0 ? &quad : nullptr); } // Iterate once using the metadata iterator, confirm the test data and rewrite int i = 0; auto meta = buffer.metadata(); while(meta.next()) { // Confirm initial state assert_metadata_eq(r, {i, 2.f * i}, *meta); // Rewrite *meta = {2 * i, 0.5f * i}; i++; } ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); // Now that all metadata has been touched, read with regular iterator and confirm updated state // and that no quad coordinates have been changed. i = 0; auto iter = buffer.iterator(); while(iter.next()) { // New metadata assert_metadata_eq(r, {2 * i, 0.5f * i}, iter.metadata()); // Quad coordinates are unchanged assert_quad_eq(r, quad, *iter.deviceQuad()); if (i % 2 == 0) { ASSERT(iter.isLocalValid()); assert_quad_eq(r, quad, *iter.localQuad()); } else { ASSERT(!iter.isLocalValid()); ASSERT(!iter.localQuad()); } i++; } ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); }