/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkBlender.h" #include "include/core/SkCanvas.h" #include "include/core/SkColorFilter.h" #include "include/core/SkData.h" #include "include/core/SkPaint.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/effects/SkBlenders.h" #include "include/effects/SkRuntimeEffect.h" #include "include/gpu/GrDirectContext.h" #include "include/sksl/SkSLDebugTrace.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkRuntimeEffectPriv.h" #include "src/core/SkTLazy.h" #include "src/gpu/KeyBuilder.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrColor.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrImageInfo.h" #include "src/gpu/ganesh/SurfaceFillContext.h" #include "src/gpu/ganesh/effects/GrSkSLFP.h" #include "tests/Test.h" #include #include void test_invalid_effect(skiatest::Reporter* r, const char* src, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; #define EMPTY_MAIN "half4 main(float2 p) { return half4(0); }" DEF_TEST(SkRuntimeEffectInvalid_NoInVariables, r) { // 'in' variables aren't allowed at all: test_invalid_effect(r, "in bool b;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in float f;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in float2 v;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in half3x3 m;" EMPTY_MAIN, "'in'"); } DEF_TEST(SkRuntimeEffectInvalid_UndefinedFunction, r) { test_invalid_effect(r, "half4 missing(); half4 main(float2 p) { return missing(); }", "function 'half4 missing()' is not defined"); } DEF_TEST(SkRuntimeEffectInvalid_UndefinedMain, r) { // Shouldn't be possible to create an SkRuntimeEffect without "main" test_invalid_effect(r, "", "main"); } DEF_TEST(SkRuntimeEffectInvalid_SkCapsDisallowed, r) { // sk_Caps is an internal system. It should not be visible to runtime effects test_invalid_effect( r, "half4 main(float2 p) { return sk_Caps.floatIs32Bits ? half4(1) : half4(0); }", "unknown identifier 'sk_Caps'"); } DEF_TEST(SkRuntimeEffect_DeadCodeEliminationStackOverflow, r) { // Verify that a deeply-nested loop does not cause stack overflow during SkVM dead-code // elimination. auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(R"( half4 main(half4 color) { half value = color.r; for (int a=0; a<10; ++a) { // 10 for (int b=0; b<10; ++b) { // 100 for (int c=0; c<10; ++c) { // 1000 for (int d=0; d<10; ++d) { // 10000 ++value; }}}} return value.xxxx; } )")); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); } DEF_TEST(SkRuntimeEffectCanDisableES2Restrictions, r) { auto test_valid_es3 = [](skiatest::Reporter* r, const char* sksl) { SkRuntimeEffect::Options opt = SkRuntimeEffectPriv::ES3Options(); auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), opt); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; test_invalid_effect(r, "float f[2] = float[2](0, 1);" EMPTY_MAIN, "construction of array type"); test_valid_es3 (r, "float f[2] = float[2](0, 1);" EMPTY_MAIN); } DEF_TEST(SkRuntimeEffectCanEnableVersion300, r) { auto test_valid = [](skiatest::Reporter* r, const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; test_invalid_effect(r, "#version 100\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN, "construction of array type"); test_valid (r, "#version 300\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN); } DEF_TEST(SkRuntimeEffectForColorFilter, r) { // Tests that the color filter factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Color filters must use the 'half4 main(half4)' signature. Either color can be float4/vec4 test_valid("half4 main(half4 c) { return c; }"); test_valid("float4 main(half4 c) { return c; }"); test_valid("half4 main(float4 c) { return c; }"); test_valid("float4 main(float4 c) { return c; }"); test_valid("vec4 main(half4 c) { return c; }"); test_valid("half4 main(vec4 c) { return c; }"); test_valid("vec4 main(vec4 c) { return c; }"); // Invalid return types test_invalid("void main(half4 c) {}", "'main' must return"); test_invalid("half3 main(half4 c) { return c.rgb; }", "'main' must return"); // Invalid argument types (some are valid as shaders, but not color filters) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter"); // sk_FragCoord should not be available test_invalid("half4 main(half4 c) { return sk_FragCoord.xy01; }", "unknown identifier"); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(half4 c) { return child.eval(c.rg); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(half4 c) { return child.eval(c); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(half4 c) { return child.eval(c, c); }"); } DEF_TEST(SkRuntimeEffectForBlender, r) { // Tests that the blender factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Blenders must use the 'half4 main(half4, half4)' signature. Any mixture of float4/vec4/half4 // is allowed. test_valid("half4 main(half4 s, half4 d) { return s; }"); test_valid("float4 main(float4 s, float4 d) { return d; }"); test_valid("float4 main(half4 s, float4 d) { return s; }"); test_valid("half4 main(float4 s, half4 d) { return d; }"); test_valid("vec4 main(half4 s, half4 d) { return s; }"); test_valid("half4 main(vec4 s, vec4 d) { return d; }"); test_valid("vec4 main(vec4 s, vec4 d) { return s; }"); // Invalid return types test_invalid("void main(half4 s, half4 d) {}", "'main' must return"); test_invalid("half3 main(half4 s, half4 d) { return s.rgb; }", "'main' must return"); // Invalid argument types (some are valid as shaders/color filters) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(half4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 a, half4 b) { return a; }", "'main' parameter"); test_invalid("half4 main(half4 a, half4 b, half4 c) { return a; }", "'main' parameter"); // sk_FragCoord should not be available test_invalid("half4 main(half4 s, half4 d) { return sk_FragCoord.xy01; }", "unknown identifier"); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(half4 s, half4 d) { return child.eval(s.rg); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(d); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); } DEF_TEST(SkRuntimeEffectForShader, r) { // Tests that the shader factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl, SkRuntimeEffect::Options options = {}) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), options); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected, SkRuntimeEffect::Options options = {}) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Shaders must use either the 'half4 main(float2)' or 'half4 main(float2, half4)' signature // Either color can be half4/float4/vec4, but the coords must be float2/vec2 test_valid("half4 main(float2 p) { return p.xyxy; }"); test_valid("float4 main(float2 p) { return p.xyxy; }"); test_valid("vec4 main(float2 p) { return p.xyxy; }"); test_valid("half4 main(vec2 p) { return p.xyxy; }"); test_valid("vec4 main(vec2 p) { return p.xyxy; }"); test_valid("half4 main(float2 p, half4 c) { return c; }"); test_valid("half4 main(float2 p, float4 c) { return c; }"); test_valid("half4 main(float2 p, vec4 c) { return c; }"); test_valid("float4 main(float2 p, half4 c) { return c; }"); test_valid("vec4 main(float2 p, half4 c) { return c; }"); test_valid("vec4 main(vec2 p, vec4 c) { return c; }"); // Invalid return types test_invalid("void main(float2 p) {}", "'main' must return"); test_invalid("half3 main(float2 p) { return p.xy1; }", "'main' must return"); // Invalid argument types (some are valid as color filters, but not shaders) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(half4 c) { return c; }", "'main' parameter"); // sk_FragCoord should be available, but only if we've enabled it via Options test_invalid("half4 main(float2 p) { return sk_FragCoord.xy01; }", "unknown identifier 'sk_FragCoord'"); SkRuntimeEffect::Options optionsWithFragCoord; SkRuntimeEffectPriv::UsePrivateRTShaderModule(&optionsWithFragCoord); test_valid("half4 main(float2 p) { return sk_FragCoord.xy01; }", optionsWithFragCoord); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(float2 p, half4 c) { return child.eval(c); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(float2 p, half4 c) { return child.eval(c, c); }"); } using PreTestFn = std::function; void paint_canvas(SkCanvas* canvas, SkPaint* paint, const PreTestFn& preTestCallback) { canvas->save(); if (preTestCallback) { preTestCallback(canvas, paint); } canvas->drawPaint(*paint); canvas->restore(); } static void verify_2x2_surface_results(skiatest::Reporter* r, const SkRuntimeEffect* effect, SkSurface* surface, std::array expected) { std::array actual; SkImageInfo info = surface->imageInfo(); if (!surface->readPixels(info, actual.data(), info.minRowBytes(), /*srcX=*/0, /*srcY=*/0)) { REPORT_FAILURE(r, "readPixels", SkString("readPixels failed")); return; } if (actual != expected) { REPORT_FAILURE(r, "Runtime effect didn't match expectations", SkStringPrintf("\n" "Expected: [ %08x %08x %08x %08x ]\n" "Got : [ %08x %08x %08x %08x ]\n" "SkSL:\n%s\n", expected[0], expected[1], expected[2], expected[3], actual[0], actual[1], actual[2], actual[3], effect->source().c_str())); } } class TestEffect { public: TestEffect(skiatest::Reporter* r, sk_sp surface) : fReporter(r), fSurface(std::move(surface)) {} void build(const char* src) { SkRuntimeEffect::Options options; SkRuntimeEffectPriv::UsePrivateRTShaderModule(&options); auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src), options); if (!effect) { REPORT_FAILURE(fReporter, "effect", SkStringPrintf("Effect didn't compile: %s", errorText.c_str())); return; } fBuilder.init(std::move(effect)); } SkRuntimeShaderBuilder::BuilderUniform uniform(const char* name) { return fBuilder->uniform(name); } SkRuntimeShaderBuilder::BuilderChild child(const char* name) { return fBuilder->child(name); } void test(std::array expected, PreTestFn preTestCallback = nullptr) { auto shader = fBuilder->makeShader(); if (!shader) { REPORT_FAILURE(fReporter, "shader", SkString("Effect didn't produce a shader")); return; } SkCanvas* canvas = fSurface->getCanvas(); SkPaint paint; paint.setShader(std::move(shader)); paint.setBlendMode(SkBlendMode::kSrc); paint_canvas(canvas, &paint, preTestCallback); verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected); } std::string trace(const SkIPoint& traceCoord) { sk_sp shader = fBuilder->makeShader(); if (!shader) { REPORT_FAILURE(fReporter, "shader", SkString("Effect didn't produce a shader")); return {}; } auto [debugShader, debugTrace] = SkRuntimeEffect::MakeTraced(std::move(shader), traceCoord); SkCanvas* canvas = fSurface->getCanvas(); SkPaint paint; paint.setShader(std::move(debugShader)); paint.setBlendMode(SkBlendMode::kSrc); paint_canvas(canvas, &paint, /*preTestCallback=*/nullptr); SkDynamicMemoryWStream wstream; debugTrace->dump(&wstream); sk_sp streamData = wstream.detachAsData(); return std::string(static_cast(streamData->data()), streamData->size()); } void test(GrColor expected, PreTestFn preTestCallback = nullptr) { this->test({expected, expected, expected, expected}, preTestCallback); } private: skiatest::Reporter* fReporter; sk_sp fSurface; SkTLazy fBuilder; }; class TestBlend { public: TestBlend(skiatest::Reporter* r, sk_sp surface) : fReporter(r), fSurface(std::move(surface)) {} void build(const char* src) { auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(src)); if (!effect) { REPORT_FAILURE(fReporter, "effect", SkStringPrintf("Effect didn't compile: %s", errorText.c_str())); return; } fBuilder.init(std::move(effect)); } SkRuntimeBlendBuilder::BuilderUniform uniform(const char* name) { return fBuilder->uniform(name); } SkRuntimeBlendBuilder::BuilderChild child(const char* name) { return fBuilder->child(name); } void test(std::array expected, PreTestFn preTestCallback = nullptr) { auto blender = fBuilder->makeBlender(); if (!blender) { REPORT_FAILURE(fReporter, "blender", SkString("Effect didn't produce a blender")); return; } SkCanvas* canvas = fSurface->getCanvas(); SkPaint paint; paint.setBlender(std::move(blender)); paint.setColor(SK_ColorGRAY); paint_canvas(canvas, &paint, preTestCallback); verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected); } void test(GrColor expected, PreTestFn preTestCallback = nullptr) { this->test({expected, expected, expected, expected}, preTestCallback); } private: skiatest::Reporter* fReporter; sk_sp fSurface; SkTLazy fBuilder; }; // Produces a 2x2 bitmap shader, with opaque colors: // [ Red, Green ] // [ Blue, White ] static sk_sp make_RGBW_shader() { SkBitmap bmp; bmp.allocPixels(SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); SkIRect topLeft = SkIRect::MakeWH(1, 1); bmp.pixmap().erase(SK_ColorRED, topLeft); bmp.pixmap().erase(SK_ColorGREEN, topLeft.makeOffset(1, 0)); bmp.pixmap().erase(SK_ColorBLUE, topLeft.makeOffset(0, 1)); bmp.pixmap().erase(SK_ColorWHITE, topLeft.makeOffset(1, 1)); return bmp.makeShader(SkSamplingOptions()); } static void test_RuntimeEffect_Shaders(skiatest::Reporter* r, GrRecordingContext* rContext) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = rContext ? SkSurface::MakeRenderTarget(rContext, SkBudgeted::kNo, info) : SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestEffect effect(r, surface); using float4 = std::array; using int4 = std::array; // Local coords effect.build("half4 main(float2 p) { return half4(half2(p - 0.5), 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // Use of a simple uniform. (Draw twice with two values to ensure it's updated). effect.build("uniform float4 gColor; half4 main(float2 p) { return half4(gColor); }"); effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f }; effect.test(0xFFBF4000); effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f }; effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul // Same, with integer uniforms effect.build("uniform int4 gColor; half4 main(float2 p) { return half4(gColor) / 255.0; }"); effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF }; effect.test(0xFFBF4000); effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F }; effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul // Test sk_FragCoord (device coords). Rotate the canvas to be sure we're seeing device coords. // Since the surface is 2x2, we should see (0,0), (1,0), (0,1), (1,1). Multiply by 0.498 to // make sure we're not saturating unexpectedly. effect.build( "half4 main(float2 p) { return half4(0.498 * (half2(sk_FragCoord.xy) - 0.5), 0, 1); }"); effect.test({0xFF000000, 0xFF00007F, 0xFF007F00, 0xFF007F7F}, [](SkCanvas* canvas, SkPaint*) { canvas->rotate(45.0f); }); // Runtime effects should use relaxed precision rules by default effect.build("half4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // ... and support *returning* float4 (aka vec4), not just half4 effect.build("float4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); effect.build("vec4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // Mutating coords should work. (skbug.com/10918) effect.build("vec4 main(vec2 p) { p -= 0.5; return vec4(p, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); effect.build("void moveCoords(inout vec2 p) { p -= 0.5; }" "vec4 main(vec2 p) { moveCoords(p); return vec4(p, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // // Sampling children // // Sampling a null child should return the paint color effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); effect.child("child") = nullptr; effect.test(0xFF00FFFF, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); sk_sp rgbwShader = make_RGBW_shader(); // Sampling a simple child at our coordinates effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); effect.child("child") = rgbwShader; effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF}); // Sampling with explicit coordinates (reflecting about the diagonal) effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p.yx); }"); effect.child("child") = rgbwShader; effect.test({0xFF0000FF, 0xFFFF0000, 0xFF00FF00, 0xFFFFFFFF}); // Bind an image shader, but don't use it - ensure that we don't assert or generate bad shaders. // (skbug.com/12429) effect.build("uniform shader child;" "half4 main(float2 p) { return half4(0, 1, 0, 1); }"); effect.child("child") = rgbwShader; effect.test(0xFF00FF00); // // Helper functions // // Test case for inlining in the pipeline-stage and fragment-shader passes (skbug.com/10526): effect.build("float2 helper(float2 x) { return x + 1; }" "half4 main(float2 p) { float2 v = helper(p); return half4(half2(v), 0, 1); }"); effect.test(0xFF00FFFF); } DEF_TEST(SkRuntimeEffectSimple, r) { test_RuntimeEffect_Shaders(r, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectSimple_GPU, r, ctxInfo) { test_RuntimeEffect_Shaders(r, ctxInfo.directContext()); } DEF_TEST(SkRuntimeEffectTraceShader, r) { for (int imageSize : {2, 80}) { SkImageInfo info = SkImageInfo::Make(imageSize, imageSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestEffect effect(r, surface); effect.build(R"( half4 main(float2 p) { float2 val = p - 0.5; return val.0y01; } )"); int center = imageSize / 2; std::string dump = effect.trace({center, 1}); auto expectation = SkSL::String::printf(R"($0 = [main].result (float4 : slot 1/4, L2) $1 = [main].result (float4 : slot 2/4, L2) $2 = [main].result (float4 : slot 3/4, L2) $3 = [main].result (float4 : slot 4/4, L2) $4 = p (float2 : slot 1/2, L2) $5 = p (float2 : slot 2/2, L2) $6 = val (float2 : slot 1/2, L3) $7 = val (float2 : slot 2/2, L3) F0 = half4 main(float2 p) enter half4 main(float2 p) p.x = %d.5 p.y = 1.5 scope +1 line 3 val.x = %d val.y = 1 line 4 [main].result.x = 0 [main].result.y = 1 [main].result.z = 0 [main].result.w = 1 scope -1 exit half4 main(float2 p) )", center, center); REPORTER_ASSERT(r, dump == expectation, "Trace output does not match expectation for %dx%d:\n%.*s\n", imageSize, imageSize, (int)dump.size(), dump.data()); } } DEF_TEST(SkRuntimeEffectTracesAreUnoptimized, r) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestEffect effect(r, surface); effect.build(R"( int globalUnreferencedVar = 7; half inlinableFunction() { return 1; } half4 main(float2 p) { if (true) { int localUnreferencedVar = 7; } return inlinableFunction().xxxx; } )"); std::string dump = effect.trace({1, 1}); constexpr char kExpectation[] = R"($0 = globalUnreferencedVar (int, L2) $1 = [main].result (float4 : slot 1/4, L6) $2 = [main].result (float4 : slot 2/4, L6) $3 = [main].result (float4 : slot 3/4, L6) $4 = [main].result (float4 : slot 4/4, L6) $5 = p (float2 : slot 1/2, L6) $6 = p (float2 : slot 2/2, L6) $7 = localUnreferencedVar (int, L8) $8 = [inlinableFunction].result (float, L3) F0 = half4 main(float2 p) F1 = half inlinableFunction() globalUnreferencedVar = 7 enter half4 main(float2 p) p.x = 1.5 p.y = 1.5 scope +1 line 7 scope +1 line 8 localUnreferencedVar = 7 scope -1 line 10 enter half inlinableFunction() scope +1 line 4 [inlinableFunction].result = 1 scope -1 exit half inlinableFunction() [main].result.x = 1 [main].result.y = 1 [main].result.z = 1 [main].result.w = 1 scope -1 exit half4 main(float2 p) )"; REPORTER_ASSERT(r, dump == kExpectation, "Trace output does not match expectation:\n%.*s\n", (int)dump.size(), dump.data()); } DEF_TEST(SkRuntimeEffectTraceCodeThatCannotBeUnoptimized, r) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestEffect effect(r, surface); effect.build(R"( half4 main(float2 p) { int variableThatGetsOptimizedAway = 7; if (true) { return half4(1); } // This (unreachable) path doesn't return a value. // Without optimization, SkSL thinks this code doesn't return a value on every path. } )"); std::string dump = effect.trace({1, 1}); constexpr char kExpectation[] = R"($0 = [main].result (float4 : slot 1/4, L2) $1 = [main].result (float4 : slot 2/4, L2) $2 = [main].result (float4 : slot 3/4, L2) $3 = [main].result (float4 : slot 4/4, L2) $4 = p (float2 : slot 1/2, L2) $5 = p (float2 : slot 2/2, L2) F0 = half4 main(float2 p) enter half4 main(float2 p) p.x = 1.5 p.y = 1.5 scope +1 scope +1 line 5 [main].result.x = 1 [main].result.y = 1 [main].result.z = 1 [main].result.w = 1 scope -1 scope -1 exit half4 main(float2 p) )"; REPORTER_ASSERT(r, dump == kExpectation, "Trace output does not match expectation:\n%.*s\n", (int)dump.size(), dump.data()); } static void test_RuntimeEffect_Blenders(skiatest::Reporter* r, GrRecordingContext* rContext) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = rContext ? SkSurface::MakeRenderTarget(rContext, SkBudgeted::kNo, info) : SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestBlend effect(r, surface); using float2 = std::array; using float4 = std::array; using int4 = std::array; // Use of a simple uniform. (Draw twice with two values to ensure it's updated). effect.build("uniform float4 gColor; half4 main(half4 s, half4 d) { return half4(gColor); }"); effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f }; effect.test(0xFFBF4000); effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f }; effect.test(0x7F0000FF); // We don't clamp here either // Same, with integer uniforms effect.build("uniform int4 gColor;" "half4 main(half4 s, half4 d) { return half4(gColor) / 255.0; }"); effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF }; effect.test(0xFFBF4000); effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F }; effect.test(0x7F0000FF); // We don't clamp here either // Verify that mutating the source and destination colors is allowed effect.build("half4 main(half4 s, half4 d) { s += d; d += s; return half4(1); }"); effect.test(0xFFFFFFFF); // Verify that we can write out the source color (ignoring the dest color) // This is equivalent to the kSrc blend mode. effect.build("half4 main(half4 s, half4 d) { return s; }"); effect.test(0xFF888888); // Fill the destination with a variety of colors (using the RGBW shader) SkPaint rgbwPaint; rgbwPaint.setShader(make_RGBW_shader()); rgbwPaint.setBlendMode(SkBlendMode::kSrc); surface->getCanvas()->drawPaint(rgbwPaint); // Verify that we can read back the dest color exactly as-is (ignoring the source color) // This is equivalent to the kDst blend mode. effect.build("half4 main(half4 s, half4 d) { return d; }"); effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF}); // Verify that we can invert the destination color (including the alpha channel). // The expected outputs are the exact inverse of the previous test. effect.build("half4 main(half4 s, half4 d) { return half4(1) - d; }"); effect.test({0x00FFFF00, 0x00FF00FF, 0x0000FFFF, 0x00000000}); // Verify that color values are clamped to 0 and 1. effect.build("half4 main(half4 s, half4 d) { return half4(-1); }"); effect.test(0x00000000); effect.build("half4 main(half4 s, half4 d) { return half4(2); }"); effect.test(0xFFFFFFFF); // // Sampling children // // Sampling a null shader/color filter should return the paint color. effect.build("uniform shader child;" "half4 main(half4 s, half4 d) { return child.eval(s.rg); }"); effect.child("child") = nullptr; effect.test(0xFF00FFFF, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); effect.build("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(s); }"); effect.child("child") = nullptr; effect.test(0xFF00FFFF, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); // Sampling a null blender should do a src-over blend. Draw 50% black over RGBW to verify this. surface->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = nullptr; effect.test({0xFF000080, 0xFF008000, 0xFF800000, 0xFF808080}, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({0.0f, 0.0f, 0.0f, 0.497f}); }); // Sampling a shader at various coordinates effect.build("uniform shader child;" "uniform half2 pos;" "half4 main(half4 s, half4 d) { return child.eval(pos); }"); effect.child("child") = make_RGBW_shader(); effect.uniform("pos") = float2{0, 0}; effect.test(0xFF0000FF); effect.uniform("pos") = float2{1, 0}; effect.test(0xFF00FF00); effect.uniform("pos") = float2{0, 1}; effect.test(0xFFFF0000); effect.uniform("pos") = float2{1, 1}; effect.test(0xFFFFFFFF); // Sampling a color filter effect.build("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(half4(1)); }"); effect.child("child") = SkColorFilters::Blend(0xFF012345, SkBlendMode::kSrc); effect.test(0xFF452301); // Sampling a built-in blender surface->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = SkBlender::Mode(SkBlendMode::kPlus); effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF}, [](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); }); // Sampling a runtime-effect blender surface->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = SkBlenders::Arithmetic(0, 1, 1, 0, /*enforcePremul=*/false); effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF}, [](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); }); } DEF_TEST(SkRuntimeEffect_Blender_CPU, r) { test_RuntimeEffect_Blenders(r, /*rContext=*/nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffect_Blender_GPU, r, ctxInfo) { test_RuntimeEffect_Blenders(r, ctxInfo.directContext()); } DEF_TEST(SkRuntimeShaderBuilderReuse, r) { const char* kSource = R"( uniform half x; half4 main(float2 p) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); // Test passes if this sequence doesn't assert. skbug.com/10667 SkRuntimeShaderBuilder b(std::move(effect)); b.uniform("x") = 0.0f; auto shader_0 = b.makeShader(); b.uniform("x") = 1.0f; auto shader_1 = b.makeShader(); } DEF_TEST(SkRuntimeBlendBuilderReuse, r) { const char* kSource = R"( uniform half x; half4 main(half4 s, half4 d) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForBlender(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); // We should be able to construct multiple SkBlenders in a row without asserting. SkRuntimeBlendBuilder b(std::move(effect)); for (float x = 0.0f; x <= 2.0f; x += 2.0f) { b.uniform("x") = x; sk_sp blender = b.makeBlender(); } } DEF_TEST(SkRuntimeShaderBuilderSetUniforms, r) { const char* kSource = R"( uniform half x; uniform vec2 offset; half4 main(float2 p) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); SkRuntimeShaderBuilder b(std::move(effect)); // Test passes if this sequence doesn't assert. float x = 1.0f; REPORTER_ASSERT(r, b.uniform("x").set(&x, 1)); // add extra value to ensure that set doesn't try to use sizeof(array) float origin[] = { 2.0f, 3.0f, 4.0f }; REPORTER_ASSERT(r, b.uniform("offset").set(origin, 2)); #ifndef SK_DEBUG REPORTER_ASSERT(r, !b.uniform("offset").set(origin, 1)); REPORTER_ASSERT(r, !b.uniform("offset").set(origin, 3)); #endif auto shader = b.makeShader(); } DEF_TEST(SkRuntimeEffectThreaded, r) { // SkRuntimeEffect uses a single compiler instance, but it's mutex locked. // This tests that we can safely use it from more than one thread, and also // that programs don't refer to shared structures owned by the compiler. // skbug.com/10589 static constexpr char kSource[] = "half4 main(float2 p) { return sk_FragCoord.xyxy; }"; std::thread threads[16]; for (auto& thread : threads) { thread = std::thread([r]() { SkRuntimeEffect::Options options; SkRuntimeEffectPriv::UsePrivateRTShaderModule(&options); auto [effect, error] = SkRuntimeEffect::MakeForShader(SkString(kSource), options); REPORTER_ASSERT(r, effect); }); } for (auto& thread : threads) { thread.join(); } } DEF_TEST(SkRuntimeColorFilterSingleColor, r) { // Test runtime colorfilters support filterColor4f(). auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{"half4 main(half4 c) { return c*c; }"}); REPORTER_ASSERT(r, effect); REPORTER_ASSERT(r, err.isEmpty()); sk_sp cf = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, cf); SkColor4f c = cf->filterColor4f({0.25, 0.5, 0.75, 1.0}, sk_srgb_singleton(), sk_srgb_singleton()); REPORTER_ASSERT(r, c.fR == 0.0625f); REPORTER_ASSERT(r, c.fG == 0.25f); REPORTER_ASSERT(r, c.fB == 0.5625f); REPORTER_ASSERT(r, c.fA == 1.0f); } static void test_RuntimeEffectStructNameReuse(skiatest::Reporter* r, GrRecordingContext* rContext) { // Test that two different runtime effects can reuse struct names in a single paint operation auto [childEffect, err] = SkRuntimeEffect::MakeForShader(SkString( "uniform shader paint;" "struct S { half4 rgba; };" "void process(inout S s) { s.rgba.rgb *= 0.5; }" "half4 main(float2 p) { S s; s.rgba = paint.eval(p); process(s); return s.rgba; }" )); REPORTER_ASSERT(r, childEffect, "%s\n", err.c_str()); sk_sp nullChild = nullptr; sk_sp child = childEffect->makeShader(/*uniforms=*/nullptr, &nullChild, /*childCount=*/1); SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = rContext ? SkSurface::MakeRenderTarget(rContext, SkBudgeted::kNo, info) : SkSurface::MakeRaster(info); REPORTER_ASSERT(r, surface); TestEffect effect(r, surface); effect.build( "uniform shader child;" "struct S { float2 coord; };" "void process(inout S s) { s.coord = s.coord.yx; }" "half4 main(float2 p) { S s; s.coord = p; process(s); return child.eval(s.coord); " "}"); effect.child("child") = child; effect.test(0xFF00407F, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({0.99608f, 0.50196f, 0.0f, 1.0f}); }); } DEF_TEST(SkRuntimeStructNameReuse, r) { test_RuntimeEffectStructNameReuse(r, nullptr); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkRuntimeStructNameReuse_GPU, r, ctxInfo) { test_RuntimeEffectStructNameReuse(r, ctxInfo.directContext()); } DEF_TEST(SkRuntimeColorFilterFlags, r) { { // Here's a non-trivial filter that doesn't change alpha. auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{ "half4 main(half4 color) { return color + half4(1,1,1,0); }"}); REPORTER_ASSERT(r, effect && err.isEmpty()); sk_sp filter = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, filter && filter->isAlphaUnchanged()); } { // Here's one that definitely changes alpha. auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{ "half4 main(half4 color) { return color + half4(0,0,0,4); }"}); REPORTER_ASSERT(r, effect && err.isEmpty()); sk_sp filter = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, filter && !filter->isAlphaUnchanged()); } } DEF_TEST(SkRuntimeShaderSampleCoords, r) { // This test verifies that we detect calls to sample where the coords are the same as those // passed to main. In those cases, it's safe to turn the "explicit" sampling into "passthrough" // sampling. This optimization is implemented very conservatively. // // It also checks that we correctly set the "referencesSampleCoords" bit on the runtime effect // FP, depending on how the coords parameter to main is used. auto test = [&](const char* src, bool expectExplicit, bool expectReferencesSampleCoords) { auto [effect, err] = SkRuntimeEffect::MakeForShader(SkStringPrintf("uniform shader child; %s", src)); REPORTER_ASSERT(r, effect); auto child = GrFragmentProcessor::MakeColor({ 1, 1, 1, 1 }); auto fp = GrSkSLFP::Make(effect, "test_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "child", std::move(child)); REPORTER_ASSERT(r, fp); REPORTER_ASSERT(r, fp->childProcessor(0)->sampleUsage().isExplicit() == expectExplicit); REPORTER_ASSERT(r, fp->usesSampleCoords() == expectReferencesSampleCoords); }; // Cases where our optimization is valid, and works: // Direct use of passed-in coords. Here, the only use of sample coords is for a sample call // converted to passthrough, so referenceSampleCoords is *false*, despite appearing in main. test("half4 main(float2 xy) { return child.eval(xy); }", false, false); // Sample with passed-in coords, read (but don't write) sample coords elsewhere test("half4 main(float2 xy) { return child.eval(xy) + sin(xy.x); }", false, true); // Cases where our optimization is not valid, and does not happen: // Sampling with values completely unrelated to passed-in coords test("half4 main(float2 xy) { return child.eval(float2(0, 0)); }", true, false); // Use of expression involving passed in coords test("half4 main(float2 xy) { return child.eval(xy * 0.5); }", true, true); // Use of coords after modification test("half4 main(float2 xy) { xy *= 2; return child.eval(xy); }", true, true); // Use of coords after modification via out-param call test("void adjust(inout float2 xy) { xy *= 2; }" "half4 main(float2 xy) { adjust(xy); return child.eval(xy); }", true, true); // There should (must) not be any false-positive cases. There are false-negatives. // In all of these cases, our optimization would be valid, but does not happen: // Direct use of passed-in coords, modified after use test("half4 main(float2 xy) { half4 c = child.eval(xy); xy *= 2; return c; }", true, true); // Passed-in coords copied to a temp variable test("half4 main(float2 xy) { float2 p = xy; return child.eval(p); }", true, true); // Use of coords passed to helper function test("half4 helper(float2 xy) { return child.eval(xy); }" "half4 main(float2 xy) { return helper(xy); }", true, true); } DEF_TEST(SkRuntimeShaderIsOpaque, r) { // This test verifies that we detect certain simple patterns in runtime shaders, and can deduce // (via code in SkSL::Analysis::ReturnsOpaqueColor) that the resulting shader is always opaque. // That logic is conservative, and the tests below reflect this. auto test = [&](const char* body, bool expectOpaque) { auto [effect, err] = SkRuntimeEffect::MakeForShader(SkStringPrintf(R"( uniform shader cOnes; uniform shader cZeros; uniform float4 uOnes; uniform float4 uZeros; half4 main(float2 xy) { %s })", body)); REPORTER_ASSERT(r, effect); auto cOnes = SkShaders::Color(SK_ColorWHITE); auto cZeros = SkShaders::Color(SK_ColorTRANSPARENT); SkASSERT(cOnes->isOpaque()); SkASSERT(!cZeros->isOpaque()); SkRuntimeShaderBuilder builder(effect); builder.child("cOnes") = std::move(cOnes); builder.child("cZeros") = std::move(cZeros); builder.uniform("uOnes") = SkColors::kWhite; builder.uniform("uZeros") = SkColors::kTransparent; auto shader = builder.makeShader(); REPORTER_ASSERT(r, shader->isOpaque() == expectOpaque); }; // Cases where our optimization is valid, and works: // Returning opaque literals test("return half4(1);", true); test("return half4(0, 1, 0, 1);", true); test("return half4(0, 0, 0, 1);", true); // Simple expressions involving uniforms test("return uZeros.rgb1;", true); test("return uZeros.bgra.rgb1;", true); test("return half4(uZeros.rgb, 1);", true); // Simple expressions involving child.eval test("return cZeros.eval(xy).rgb1;", true); test("return cZeros.eval(xy).bgra.rgb1;", true); test("return half4(cZeros.eval(xy).rgb, 1);", true); // Multiple returns test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy).rgb1; }", true); // More expression cases: test("return (cZeros.eval(xy) * uZeros).rgb1;", true); test("return half4(1, 1, 1, 0.5 + 0.5);", true); // Constant variable propagation test("const half4 kWhite = half4(1); return kWhite;", true); // Cases where our optimization is not valid, and does not happen: // Returning non-opaque literals test("return half4(0);", false); test("return half4(1, 1, 1, 0);", false); // Returning non-opaque uniforms or children test("return uZeros;", false); test("return cZeros.eval(xy);", false); // Multiple returns test("if (xy.x < 100) { return uZeros; } else { return cZeros.eval(xy).rgb1; }", false); test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy); }", false); // There should (must) not be any false-positive cases. There are false-negatives. // In these cases, our optimization would be valid, but does not happen: // More complex expressions that can't be simplified test("return xy.x < 100 ? uZeros.rgb1 : cZeros.eval(xy).rgb1;", false); // Finally, there are cases that are conditional on the uniforms and children. These *could* // determine dynamically if the uniform and/or child being referenced is opaque, and use that // information. Today, we don't do this, so we pessimistically assume they're transparent: test("return uOnes;", false); test("return cOnes.eval(xy);", false); } DEF_GPUTEST_FOR_ALL_CONTEXTS(GrSkSLFP_Specialized, r, ctxInfo) { struct FpAndKey { std::unique_ptr fp; SkTArray key; }; // Constant color, but with an 'specialize' option that decides if the color is inserted in the // SkSL as a literal, or left as a uniform auto make_color_fp = [&](SkPMColor4f color, bool specialize) { auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"( uniform half4 color; half4 main(float2 xy) { return color; } )"); FpAndKey result; result.fp = GrSkSLFP::Make(std::move(effect), "color_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "color", GrSkSLFP::SpecializeIf(specialize, color)); skgpu::KeyBuilder builder(&result.key); result.fp->addToKey(*ctxInfo.directContext()->priv().caps()->shaderCaps(), &builder); builder.flush(); return result; }; FpAndKey uRed = make_color_fp({1, 0, 0, 1}, false), uGreen = make_color_fp({0, 1, 0, 1}, false), sRed = make_color_fp({1, 0, 0, 1}, true), sGreen = make_color_fp({0, 1, 0, 1}, true); // uRed and uGreen should have the same key - they just have different uniforms SkASSERT(uRed.key == uGreen.key); // sRed and sGreen should have keys that are different from the uniform case, and each other SkASSERT(sRed.key != uRed.key); SkASSERT(sGreen.key != uRed.key); SkASSERT(sRed.key != sGreen.key); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrSkSLFP_UniformArray, r, ctxInfo) { // Make a fill-context to draw into. GrDirectContext* directContext = ctxInfo.directContext(); SkImageInfo info = SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType); std::unique_ptr testCtx = directContext->priv().makeSFC(info, SkBackingFit::kExact); // Make an effect that takes a uniform array as input. static constexpr std::array kRed {1.0f, 0.0f, 0.0f, 1.0f}; static constexpr std::array kGreen{0.0f, 1.0f, 0.0f, 1.0f}; static constexpr std::array kBlue {0.0f, 0.0f, 1.0f, 1.0f}; static constexpr std::array kGray {0.499f, 0.499f, 0.499f, 1.0f}; for (const auto& colorArray : {kRed, kGreen, kBlue, kGray}) { // Compile our runtime effect. auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"( uniform half color[4]; half4 main(float2 xy) { return half4(color[0], color[1], color[2], color[3]); } )"); // Render our shader into the fill-context with our various input colors. testCtx->fillWithFP(GrSkSLFP::Make(std::move(effect), "test_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "color", SkMakeSpan(colorArray))); // Read our color back and ensure it matches. GrColor actual; GrPixmap pixmap(info, &actual, sizeof(GrColor)); if (!testCtx->readPixels(directContext, pixmap, /*srcPt=*/{0, 0})) { REPORT_FAILURE(r, "readPixels", SkString("readPixels failed")); break; } if (actual != GrColorPackRGBA(255 * colorArray[0], 255 * colorArray[1], 255 * colorArray[2], 255 * colorArray[3])) { REPORT_FAILURE(r, "Uniform array didn't match expectations", SkStringPrintf("\n" "Expected: [ %g %g %g %g ]\n" "Got : [ %08x ]\n", colorArray[0], colorArray[1], colorArray[2], colorArray[3], actual)); break; } } }