/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CurveUtilities.h" #include "CubicIntersection_TestData.h" #include "Intersection_Tests.h" #include "Intersections.h" #include "TestUtilities.h" const int firstCubicIntersectionTest = 9; void CubicIntersection_Test() { for (size_t index = firstCubicIntersectionTest; index < tests_count; ++index) { const Cubic& cubic1 = tests[index][0]; const Cubic& cubic2 = tests[index][1]; Cubic reduce1, reduce2; int order1 = reduceOrder(cubic1, reduce1, kReduceOrder_NoQuadraticsAllowed); int order2 = reduceOrder(cubic2, reduce2, kReduceOrder_NoQuadraticsAllowed); if (order1 < 4) { printf("%s [%d] cubic1 order=%d\n", __FUNCTION__, (int) index, order1); continue; } if (order2 < 4) { printf("%s [%d] cubic2 order=%d\n", __FUNCTION__, (int) index, order2); continue; } if (implicit_matches(reduce1, reduce2)) { printf("%s [%d] coincident\n", __FUNCTION__, (int) index); continue; } Intersections tIntersections; intersect(reduce1, reduce2, tIntersections); if (!tIntersections.intersected()) { printf("%s [%d] no intersection\n", __FUNCTION__, (int) index); continue; } for (int pt = 0; pt < tIntersections.used(); ++pt) { double tt1 = tIntersections.fT[0][pt]; double tx1, ty1; xy_at_t(cubic1, tt1, tx1, ty1); double tt2 = tIntersections.fT[1][pt]; double tx2, ty2; xy_at_t(cubic2, tt2, tx2, ty2); if (!AlmostEqualUlps(tx1, tx2)) { printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } if (!AlmostEqualUlps(ty1, ty2)) { printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } } } } #define ONE_OFF_DEBUG 0 static void oneOff(const Cubic& cubic1, const Cubic& cubic2) { SkTDArray quads1; cubic_to_quadratics(cubic1, calcPrecision(cubic1), quads1); #if ONE_OFF_DEBUG for (int index = 0; index < quads1.count(); ++index) { const Quadratic& q = quads1[index]; SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].x, q[0].y, q[1].x, q[1].y, q[2].x, q[2].y); } SkDebugf("\n"); #endif SkTDArray quads2; cubic_to_quadratics(cubic2, calcPrecision(cubic2), quads2); #if ONE_OFF_DEBUG for (int index = 0; index < quads2.count(); ++index) { const Quadratic& q = quads2[index]; SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].x, q[0].y, q[1].x, q[1].y, q[2].x, q[2].y); } SkDebugf("\n"); #endif Intersections intersections2; intersect2(cubic1, cubic2, intersections2); for (int pt = 0; pt < intersections2.used(); ++pt) { double tt1 = intersections2.fT[0][pt]; _Point xy1, xy2; xy_at_t(cubic1, tt1, xy1.x, xy1.y); int pt2 = intersections2.fFlip ? intersections2.used() - pt - 1 : pt; double tt2 = intersections2.fT[1][pt2]; xy_at_t(cubic2, tt2, xy2.x, xy2.y); #if ONE_OFF_DEBUG SkDebugf("%s t1=%1.9g (%1.9g, %1.9g) (%1.9g, %1.9g) t2=%1.9g\n", __FUNCTION__, tt1, xy1.x, xy1.y, xy2.x, xy2.y, tt2); #endif SkASSERT(xy1.approximatelyEqual(xy2)); } } static const Cubic testSet[] = { {{0, 1}, {0, 2}, {1, 0}, {1, 0}}, {{0, 1}, {0, 1}, {1, 0}, {2, 0}}, {{0, 0}, {0, 1}, {1, 1}, {1, 0}}, {{1, 0}, {0, 0}, {0, 1}, {1, 1}}, {{95.837747722788592, 45.025976907939643}, {16.564570095652982, 0.72959763963222402}, {63.209855865319199, 68.047528419665767}, {57.640240647662544, 59.524565264361243}}, {{51.593891741518817, 38.53849970667553}, {62.34752929878772, 74.924924725166022}, {74.810149322641152, 34.17966562983564}, {29.368398119401373, 94.66719277886078}}, {{39.765160968417838, 33.060396198677083}, {5.1922921581157908, 66.854301452103215}, {31.619281802149157, 25.269248720849514}, {81.541621071073038, 70.025341524754353}}, {{46.078911165743556, 48.259962651999651}, {20.24450549867214, 49.403916182650214}, {0.26325131778756683, 24.46489805563581}, {15.915006546264051, 83.515023059917155}}, {{65.454505973241524, 93.881892270353575}, {45.867360264932437, 92.723972719499827}, {2.1464054482739447, 74.636369140183717}, {33.774068594804994, 40.770872887582925}}, {{72.963387832494163, 95.659300729473728}, {11.809496633619768, 82.209921247423594}, {13.456139067865974, 57.329313623406605}, {36.060621606214262, 70.867335643091849}}, {{32.484981432782945, 75.082940782924624}, {42.467313093350882, 48.131159948246157}, {3.5963115764764657, 43.208665839959245}, {79.442476890721579, 89.709102357602262}}, {{18.98573861410177, 93.308887208490106}, {40.405250173250792, 91.039661826118675}, {8.0467721950480584, 42.100282172719147}, {40.883324221187891, 26.030185504830527}}, {{7.5374809128872498, 82.441702896003477}, {22.444346930107265, 22.138854312775123}, {66.76091829629658, 50.753805856571446}, {78.193478508942519, 97.7932997968948}}, {{97.700573130371311, 53.53260215070685}, {87.72443481149358, 84.575876772671876}, {19.215031396232092, 47.032676472809484}, {11.989686410869325, 10.659507480757082}}, {{26.192053931854691, 9.8504326817814416}, {10.174241480498686, 98.476562741434464}, {21.177712558385782, 33.814968789841501}, {75.329030899018534, 55.02231980442177}}, {{56.222082700683771, 24.54395039218662}, {95.589995289030483, 81.050822735322086}, {28.180450866082897, 28.837706255185282}, {60.128952916771617, 87.311672180570511}}, {{42.449716172390481, 52.379709366885805}, {27.896043159019225, 48.797373636065686}, {92.770268299044233, 89.899302036454571}, {12.102066544863426, 99.43241951960718}}, {{45.77532924980639, 45.958701495993274}, {37.458701356062065, 68.393691335056758}, {37.569326692060258, 27.673713456687381}, {60.674866037757539, 62.47349659096146}}, {{67.426548091427676, 37.993772624988935}, {23.483695892376684, 90.476863174921306}, {35.597065061143162, 79.872482633158796}, {75.38634169631932, 18.244890038969412}}, {{61.336508189019057, 82.693132843213675}, {44.639380902349664, 54.074825790745592}, {16.815615499771951, 20.049704667203923}, {41.866884958868326, 56.735503699973002}}, {{67.4265481, 37.9937726}, {23.4836959, 90.4768632}, {35.5970651, 79.8724826}, {75.3863417, 18.24489}}, {{61.3365082, 82.6931328}, {44.6393809, 54.0748258}, {16.8156155, 20.0497047}, {41.866885, 56.7355037}}, {{18.1312339, 31.6473732}, {95.5711034, 63.5350219}, {92.3283165, 62.0158945}, {18.5656052, 32.1268808}}, {{97.402018, 35.7169972}, {33.1127443, 25.8935163}, {1.13970027, 54.9424981}, {56.4860195, 60.529264}}, }; const size_t testSetCount = sizeof(testSet) / sizeof(testSet[0]); void CubicIntersection_OneOffTest() { for (size_t outer = 0; outer < testSetCount - 1; ++outer) { #if ONE_OFF_DEBUG SkDebugf("%s quads1[%d]\n", __FUNCTION__, outer); #endif const Cubic& cubic1 = testSet[outer]; for (size_t inner = outer + 1; inner < testSetCount; ++inner) { #if ONE_OFF_DEBUG SkDebugf("%s quads2[%d]\n", __FUNCTION__, inner); #endif const Cubic& cubic2 = testSet[inner]; oneOff(cubic1, cubic2); } } } #define DEBUG_CRASH 1 class CubicChopper { public: // only finds one intersection CubicChopper(const Cubic& c1, const Cubic& c2) : cubic1(c1) , cubic2(c2) , depth(0) { } bool intersect(double minT1, double maxT1, double minT2, double maxT2) { Cubic sub1, sub2; // FIXME: carry last subdivide and reduceOrder result with cubic sub_divide(cubic1, minT1, maxT1, sub1); sub_divide(cubic2, minT2, maxT2, sub2); Intersections i; intersect2(sub1, sub2, i); if (i.used() == 0) { return false; } double x1, y1, x2, y2; t1 = minT1 + i.fT[0][0] * (maxT1 - minT1); t2 = minT2 + i.fT[1][0] * (maxT2 - minT2); xy_at_t(cubic1, t1, x1, y1); xy_at_t(cubic2, t2, x2, y2); if (AlmostEqualUlps(x1, x2) && AlmostEqualUlps(y1, y2)) { return true; } double half1 = (minT1 + maxT1) / 2; double half2 = (minT2 + maxT2) / 2; ++depth; bool result; if (depth & 1) { result = intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2) || intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2); } else { result = intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2) || intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2); } --depth; return result; } const Cubic& cubic1; const Cubic& cubic2; double t1; double t2; int depth; }; #define TRY_OLD 0 // old way fails on test == 1 void CubicIntersection_RandTestOld() { srand(0); const int tests = 1000000; // 10000000; double largestFactor = DBL_MAX; for (int test = 0; test < tests; ++test) { Cubic cubic1, cubic2; for (int i = 0; i < 4; ++i) { cubic1[i].x = (double) rand() / RAND_MAX * 100; cubic1[i].y = (double) rand() / RAND_MAX * 100; cubic2[i].x = (double) rand() / RAND_MAX * 100; cubic2[i].y = (double) rand() / RAND_MAX * 100; } if (test == 2513) { // the pair crosses three times, but the quadratic approximation continue; // only sees one -- should be OK to ignore the other two? } if (test == 12932) { // this exposes a weakness when one cubic touches the other but continue; // does not touch the quad approximation. Captured in qc.htm as cubic15 } #if DEBUG_CRASH char str[1024]; sprintf(str, "{{%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}},\n" "{{%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}},\n", cubic1[0].x, cubic1[0].y, cubic1[1].x, cubic1[1].y, cubic1[2].x, cubic1[2].y, cubic1[3].x, cubic1[3].y, cubic2[0].x, cubic2[0].y, cubic2[1].x, cubic2[1].y, cubic2[2].x, cubic2[2].y, cubic2[3].x, cubic2[3].y); #endif _Rect rect1, rect2; rect1.setBounds(cubic1); rect2.setBounds(cubic2); bool boundsIntersect = rect1.left <= rect2.right && rect2.left <= rect2.right && rect1.top <= rect2.bottom && rect2.top <= rect1.bottom; Intersections i1, i2; #if TRY_OLD bool oldIntersects = intersect(cubic1, cubic2, i1); #else bool oldIntersects = false; #endif if (test == -1) { SkDebugf("ready...\n"); } bool newIntersects = intersect2(cubic1, cubic2, i2); if (!boundsIntersect && (oldIntersects || newIntersects)) { SkDebugf("%s %d unexpected intersection boundsIntersect=%d oldIntersects=%d" " newIntersects=%d\n%s %s\n", __FUNCTION__, test, boundsIntersect, oldIntersects, newIntersects, __FUNCTION__, str); SkASSERT(0); } if (oldIntersects && !newIntersects) { SkDebugf("%s %d missing intersection oldIntersects=%d newIntersects=%d\n%s %s\n", __FUNCTION__, test, oldIntersects, newIntersects, __FUNCTION__, str); SkASSERT(0); } if (!oldIntersects && !newIntersects) { continue; } if (i2.used() > 1) { continue; // just look at single intercepts for simplicity } Intersections self1, self2; // self-intersect checks if (intersect(cubic1, self1)) { continue; } if (intersect(cubic2, self2)) { continue; } // binary search for range necessary to enclose real intersection CubicChopper c(cubic1, cubic2); bool result = c.intersect(0, 1, 0, 1); if (!result) { // FIXME: a failure here probably means that a core routine used by CubicChopper is failing continue; } double delta1 = fabs(c.t1 - i2.fT[0][0]); double delta2 = fabs(c.t2 - i2.fT[1][0]); double calc1 = calcPrecision(cubic1); double calc2 = calcPrecision(cubic2); double factor1 = calc1 / delta1; double factor2 = calc2 / delta2; SkDebugf("%s %d calc1=%1.9g delta1=%1.9g factor1=%1.9g calc2=%1.9g delta2=%1.9g" " factor2=%1.9g\n", __FUNCTION__, test, calc1, delta1, factor1, calc2, delta2, factor2); if (factor1 < largestFactor) { SkDebugf("WE HAVE A WINNER! %1.9g\n", factor1); SkDebugf("%s\n", str); oneOff(cubic1, cubic2); largestFactor = factor1; } if (factor2 < largestFactor) { SkDebugf("WE HAVE A WINNER! %1.9g\n", factor2); SkDebugf("%s\n", str); oneOff(cubic1, cubic2); largestFactor = factor2; } } } void CubicIntersection_RandTest() { srand(0); const int tests = 10000000; for (int test = 0; test < tests; ++test) { Cubic cubic1, cubic2; for (int i = 0; i < 4; ++i) { cubic1[i].x = (double) rand() / RAND_MAX * 100; cubic1[i].y = (double) rand() / RAND_MAX * 100; cubic2[i].x = (double) rand() / RAND_MAX * 100; cubic2[i].y = (double) rand() / RAND_MAX * 100; } #if DEBUG_CRASH char str[1024]; sprintf(str, "{{%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}},\n" "{{%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}, {%1.9g, %1.9g}},\n", cubic1[0].x, cubic1[0].y, cubic1[1].x, cubic1[1].y, cubic1[2].x, cubic1[2].y, cubic1[3].x, cubic1[3].y, cubic2[0].x, cubic2[0].y, cubic2[1].x, cubic2[1].y, cubic2[2].x, cubic2[2].y, cubic2[3].x, cubic2[3].y); #endif _Rect rect1, rect2; rect1.setBounds(cubic1); rect2.setBounds(cubic2); bool boundsIntersect = rect1.left <= rect2.right && rect2.left <= rect2.right && rect1.top <= rect2.bottom && rect2.top <= rect1.bottom; if (test == -1) { SkDebugf("ready...\n"); } Intersections intersections2; bool newIntersects = intersect2(cubic1, cubic2, intersections2); if (!boundsIntersect && newIntersects) { SkDebugf("%s %d unexpected intersection boundsIntersect=%d " " newIntersects=%d\n%s %s\n", __FUNCTION__, test, boundsIntersect, newIntersects, __FUNCTION__, str); SkASSERT(0); } for (int pt = 0; pt < intersections2.used(); ++pt) { double tt1 = intersections2.fT[0][pt]; _Point xy1, xy2; xy_at_t(cubic1, tt1, xy1.x, xy1.y); int pt2 = intersections2.fFlip ? intersections2.used() - pt - 1 : pt; double tt2 = intersections2.fT[1][pt2]; xy_at_t(cubic2, tt2, xy2.x, xy2.y); #if 0 SkDebugf("%s t1=%1.9g (%1.9g, %1.9g) (%1.9g, %1.9g) t2=%1.9g\n", __FUNCTION__, tt1, xy1.x, xy1.y, xy2.x, xy2.y, tt2); #endif SkASSERT(xy1.approximatelyEqual(xy2)); } } } static Cubic deltaTestSet[] = { {{1, 4}, {1, 4.*2/3}, {1, 4.*1/3}, {1, 0}}, {{0, 3}, {1, 2}, {2, 1}, {3, 0}}, {{1, 4}, {1, 4.*2/3}, {1, 4.*1/3}, {1, 0}}, {{3.5, 1}, {2.5, 2}, {1.5, 3}, {0.5, 4}} }; size_t deltaTestSetLen = sizeof(deltaTestSet) / sizeof(deltaTestSet[0]); static double deltaTestSetT[] = { 3./8, 5./12, 6./8, 9./12 }; size_t deltaTestSetTLen = sizeof(deltaTestSetT) / sizeof(deltaTestSetT[0]); static double expectedT[] = { 0.5, 1./3, 1./8, 5./6 }; size_t expectedTLen = sizeof(expectedT) / sizeof(expectedT[0]); // FIXME: this test no longer valid -- does not take minimum scale contribution into account void CubicIntersection_ComputeDeltaTest() { SkASSERT(deltaTestSetLen == deltaTestSetTLen); SkASSERT(expectedTLen == deltaTestSetTLen); for (size_t index = 0; index < deltaTestSetLen; index += 2) { const Cubic& c1 = deltaTestSet[index]; const Cubic& c2 = deltaTestSet[index + 1]; double t1 = deltaTestSetT[index]; double t2 = deltaTestSetT[index + 1]; double d1, d2; computeDelta(c1, t1, 1, c2, t2, 1, d1, d2); SkASSERT(approximately_equal(t1 + d1, expectedT[index]) || approximately_equal(t1 - d1, expectedT[index])); SkASSERT(approximately_equal(t2 + d2, expectedT[index + 1]) || approximately_equal(t2 - d2, expectedT[index + 1])); } }