/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBenchmark.h" #include "SkRandom.h" #include "SkTemplates.h" template class Memcpy32Bench : public SkBenchmark { public: explicit Memcpy32Bench(int count, Memcpy32 memcpy32, const char* name) : fCount(count) , fMemcpy32(memcpy32) , fName(SkStringPrintf("%s_%d", name, count)) {} virtual const char* onGetName() SK_OVERRIDE { return fName.c_str(); } virtual bool isSuitableFor(Backend backend) SK_OVERRIDE { return backend == kNonRendering_Backend; } virtual void onPreDraw() SK_OVERRIDE { fDst.reset(fCount); fSrc.reset(fCount); SkRandom rand; for (int i = 0; i < fCount; i++) { fSrc[i] = rand.nextU(); } } virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE { for (int i = 0; i < loops; i++) { fMemcpy32(fDst, fSrc, fCount); } } private: SkAutoTMalloc fDst, fSrc; int fCount; Memcpy32 fMemcpy32; const SkString fName; }; template static Memcpy32Bench* Bench(int count, Memcpy32 memcpy32, const char* name) { return new Memcpy32Bench(count, memcpy32, name); } #define BENCH(memcpy32, count) DEF_BENCH(return Bench(count, memcpy32, #memcpy32); ) // Let the libc developers do what they think is best. static void memcpy32_memcpy(uint32_t* dst, const uint32_t* src, int count) { memcpy(dst, src, sizeof(uint32_t) * count); } BENCH(memcpy32_memcpy, 10) BENCH(memcpy32_memcpy, 100) BENCH(memcpy32_memcpy, 1000) BENCH(memcpy32_memcpy, 10000) BENCH(memcpy32_memcpy, 100000) // Let the compiler's autovectorizer do what it thinks is best. static void memcpy32_autovectorize(uint32_t* dst, const uint32_t* src, int count) { while (count --> 0) { *dst++ = *src++; } } BENCH(memcpy32_autovectorize, 10) BENCH(memcpy32_autovectorize, 100) BENCH(memcpy32_autovectorize, 1000) BENCH(memcpy32_autovectorize, 10000) BENCH(memcpy32_autovectorize, 100000) #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 // Align dst to 16 bytes, then use aligned stores. src isn't algined, so use unaligned loads. static void memcpy32_sse2_align(uint32_t* dst, const uint32_t* src, int count) { if (count >= 16) { while (uintptr_t(dst) & 0xF) { *dst++ = *src++; count--; } __m128i* dst128 = reinterpret_cast<__m128i*>(dst); const __m128i* src128 = reinterpret_cast(src); dst += 16 * (count / 16); src += 16 * (count / 16); while (count >= 16) { __m128i a = _mm_loadu_si128(src128++); __m128i b = _mm_loadu_si128(src128++); __m128i c = _mm_loadu_si128(src128++); __m128i d = _mm_loadu_si128(src128++); _mm_store_si128(dst128++, a); _mm_store_si128(dst128++, b); _mm_store_si128(dst128++, c); _mm_store_si128(dst128++, d); count -= 16; } } while (count --> 0) { *dst++ = *src++; } } BENCH(memcpy32_sse2_align, 10) BENCH(memcpy32_sse2_align, 100) BENCH(memcpy32_sse2_align, 1000) BENCH(memcpy32_sse2_align, 10000) BENCH(memcpy32_sse2_align, 100000) // Leave both dst and src unaliged, and so use unaligned stores for dst and unaligned loads for src. static void memcpy32_sse2_unalign(uint32_t* dst, const uint32_t* src, int count) { __m128i* dst128 = reinterpret_cast<__m128i*>(dst); const __m128i* src128 = reinterpret_cast(src); dst += 16 * (count / 16); src += 16 * (count / 16); while (count >= 16) { __m128i a = _mm_loadu_si128(src128++); __m128i b = _mm_loadu_si128(src128++); __m128i c = _mm_loadu_si128(src128++); __m128i d = _mm_loadu_si128(src128++); _mm_storeu_si128(dst128++, a); _mm_storeu_si128(dst128++, b); _mm_storeu_si128(dst128++, c); _mm_storeu_si128(dst128++, d); count -= 16; } while (count --> 0) { *dst++ = *src++; } } BENCH(memcpy32_sse2_unalign, 10) BENCH(memcpy32_sse2_unalign, 100) BENCH(memcpy32_sse2_unalign, 1000) BENCH(memcpy32_sse2_unalign, 10000) BENCH(memcpy32_sse2_unalign, 100000) #endif // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #undef BENCH